
Operators in C Language

By

Prof. Muhammad Iqbal Bhat

Department of Higher Education,

Government Degree College Beerwah

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Operators in C language

Operators are symbols that perform operations on operands in a programming language

C language has various types of operators, including arithmetic, relational, logical, assignment,
and bitwise operators

Operators allow programmers to manipulate data and perform different computations in C
programs

Understanding the different types of operators and their functionality is essential for writing
effective C code

In the following slides, we will delve into each type of operator in C language, their syntax,
examples, and common mistakes to avoid.

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Operators

Arithmetic Operators.

Increment and Decrement Operators.

Relational Operators.

Logical Operators.

Bitwise Operators.

Assignment Operators.

Conditional Operator.

Special Operators

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Arithmetic Operators

Arithmetic operators perform basic mathematical
operations on operands in C language.
• Addition (+): Adds two operands together and returns the sum
• Subtraction (-): Subtracts one operand from another and returns the

difference
• Multiplication (*): Multiplies two operands and returns the product
• Division (/): Divides one operand by another and returns the quotient
• Modulus (%): Divides one operand by another and returns the

remainder
Prof

. M
. Iq

ba
l B

ha
t (J

KHED)

Arithmetic Operators- Example

int a = 5; // declare and initialize variable a with value 5

int b = 3; // declare and initialize variable b with value 3

int sum = a + b; // add a and b, store the result in sum

int difference = a - b; // subtract b from a, store the result in
difference

int product = a * b; // multiply a and b, store the result in product

int quotient = a / b; // divide a by b, store the result in quotient

int remainder = a % b; // divide a by b and get the remainder, store the
result in remainder

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Increment/Decrement Operators
Increment and decrement operators are used to increase or decrease the value
of a variable by a fixed amount

Increment and
decrement

Increment (++): Increases the value of a variable by 1Increment

Decrement (--): Decreases the value of a variable by 1Decrement

Prefix increment: ++operand (e.g., ++x)Prefix

Prefix decrement: --operand (e.g., --x)Prefix

Postfix increment: operand++ (e.g., x++)Postfix

Postfix decrement: operand-- (e.g., x--)Postfix

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Increment/Decrement
Operators- Example

int x = 5; // declare and initialize variable x with value 5

int y = 10; // declare and initialize variable y with value 10

// Prefix increment

int result1 = ++x; // increment x by 1 and store the result in
result1, x is now 6

// Prefix decrement

int result2 = --y; // decrement y by 1 and store the result in
result2, y is now 9

int a = 3; // declare and initialize variable a with value 3

int b = 8; // declare and initialize variable b with value 8

// Postfix increment

int result3 = a++; // store the current value of a in result3, then
increment a by 1, a is now 4

// Postfix decrement

int result4 = b--; // store the current value of b in result4, then
decrement b by 1, b is now 7

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Relational Operators:

Relational operators compare two operands and return a boolean
value (true or false) based on the comparison result

• Greater than (>): Checks if the value of operand1 is greater than the value of
operand2

• Less than (<): Checks if the value of operand1 is less than the value of operand2
• Greater than or equal to (>=): Checks if the value of operand1 is greater than or

equal to the value of operand2
• Less than or equal to (<=): Checks if the value of operand1 is less than or equal to

the value of operand2
• Equal to (==): Checks if the value of operand1 is equal to the value of operand2
• Not equal to (!=): Checks if the value of operand1 is not equal to the value of

operand2

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Relational Operators-
Example

int a = 5;

int b = 3;

bool result1 = a > b;

bool result2 = a < b;

bool result3 = a >= b;

bool result4 = a <= b;

bool result5 = a == b;

bool result6 = a != b;Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Logical Operators:

Logical operators are used to perform
logical operations on boolean values (true
or false)
• AND (&&): Returns true if both operands are true,

false otherwise
• OR (||): Returns true if at least one operand is true,

false otherwise
• NOT (!): Returns the opposite of the operand's value

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Logical Operators-
Example

int x = 1;

int y = 0;

// AND operator

int result1 = x && y;

// OR operator

int result2 = x || y;

// NOT operator

int result3 = !x;

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Assignment Operators:

Assignment operators are used to assign a
value to a variable in C language.

• Assignment (=): Assigns a value to a variable
• Compound assignment operators (e.g., +=, -=, *=, /=):

Performs an operation and assigns the result to a variable
in a single step

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Assignment Operators-
Example

int x = 10;

// Assignment operator

x = 20;

// Compound assignment operator

x += 5;

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Bitwise Operators
Bitwise operators are used to perform operations on
individual bits of integer values in C language.

• Bitwise AND (&): Performs bitwise AND operation on each pair of
corresponding bits

• Bitwise OR (|): Performs bitwise OR operation on each pair of
corresponding bits

• Bitwise XOR (^): Performs bitwise XOR operation on each pair of
corresponding bits

• Bitwise NOT (~): Inverts the bits of the operand
• Left shift (<<): Shifts the bits of the operand to the left by a specified

number of positions
• Right shift (>>): Shifts the bits of the operand to the right by a specified

number of positions

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Bitwise Operators-
Example

unsigned int x = 5; // declare and initialize unsigned integer
variable x with value 5 (binary: 0101)

unsigned int y = 3; // declare and initialize unsigned integer
variable y with value 3 (binary: 0011)

// Bitwise AND

unsigned int result1 = x & y; // perform bitwise AND operation
on x and y, store the result in result1 (binary: 0001)

// Bitwise OR

unsigned int result2 = x | y; // perform bitwise OR operation on
x and y, store the result in result2 (binary: 0111)

// Bitwise XOR

unsigned int result3 = x ^ y; // perform bitwise XOR operation
on x and y, store the result in result3 (binary: 0110)

// Bitwise NOT

unsigned int result4 = ~x; // perform bitwise NOT operation on
x, store the result in result4 (binary: 1111 1111 1111 1100)

// Left shift

unsigned int result5 = x << 2; // shift the bits of x to the
left by 2 positions, store the result in result5 (binary: 10100)

// Right shift

unsigned int result6 = x >> 1; // shift the bits of x to the
right by 1 position, store the result in result6 (binary: 0010)

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Operator Precedence

Operator precedence determines the order in which operators are
evaluated in an expression.

C language follows a specific set of rules for operator precedence,
which dictates the order in which operators are evaluated.

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Operator Precedence
Precedence Operator(s) Example Expression Evaluation Result

1 () [] -> . a = (b + c) * d a = (10 + 20) * 30
2 ++ -- a = b++ + c a = 10 + 20
3 + - a = b + c - d a = 30 - 5
4 * / % a = b * c / d a = 25 / 5
5 + - a = b + c - d a = 5
6 < <= > >= a = b < c a = 1 (True)
7 == != a = b == c a = 0 (False)
8 && a = b && c a = 1 (True)
9 || a = b || c a = 1 (True)

10 = += -= *= /= %= a = b + c * d a = 300

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Program
Examples

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

1. Calculate the area of a rectangle
#include <stdio.h>

int main() {

int length, width;

printf("Enter length of the rectangle: ");

scanf("%d", &length);

printf("Enter width of the rectangle: ");

scanf("%d", &width);

int area = length * width;

printf("Area of the rectangle: %d\n", area);

return 0;

}

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

2. Calculate the sum and average of three numbers:
#include <stdio.h>

int main() {

int num1, num2, num3;

printf("Enter three numbers separated by spaces: ");

scanf("%d %d %d", &num1, &num2, &num3);

int sum = num1 + num2 + num3;

float average = (float)sum / 3;

printf("Sum: %d\n", sum);

printf("Average: %.2f\n", average);

return 0;

}

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

3. Check if a number is even or odd:
#include <stdio.h>

int main() {

int num;

printf("Enter a number: ");

scanf("%d", &num);

if (num % 2 == 0) {

printf("%d is even.\n", num);

} else {

printf("%d is odd.\n", num);

}

return 0;

}

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

4. Swap two numbers without using a temporary variable
#include <stdio.h>

int main() {

int num1, num2;

printf("Enter two numbers separated by spaces: ");

scanf("%d %d", &num1, &num2);

printf("Before swapping: num1 = %d, num2 = %d\n", num1, num2);

num1 = num1 + num2;

num2 = num1 - num2;

num1 = num1 - num2;

printf("After swapping: num1 = %d, num2 = %d\n", num1, num2);

return 0;

}

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

5. Check if a year is a leap year or not
#include <stdio.h>

int main() {

int year;

printf("Enter a year: ");

scanf("%d", &year);

if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0) {

printf("%d is a leap year.\n", year);

} else {

printf("%d is not a leap year.\n", year);

}

return 0;

}

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

6. Convert temperature from Celsius to Fahrenheit
#include <stdio.h>

int main() {

float celsius;

printf("Enter temperature in Celsius: ");

scanf("%f", &celsius);

float fahrenheit = (celsius * 9/5) + 32;

printf("Temperature in Fahrenheit: %.2f\n", fahrenheit);

return 0;

}

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

7. Calculating Simple Interest:
#include <stdio.h>

int main() {

float principal = 1000;

float rate = 0.05;

float time = 2;

float interest = principal * rate * time;

printf("Principal: $%.2f\n", principal);

printf("Rate: %.2f\n", rate);

printf("Time: %.2f years\n", time);

printf("Simple Interest: $%.2f\n", interest);

return 0;

}

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

8. Calculate the sum of digits of a given number:
#include <stdio.h>

int main() {

int num;

printf("Enter a positive integer: ");

scanf("%d", &num);

int sum = 0;

while (num > 0) {

sum += num % 10;

num /= 10;

}

printf("Sum of digits: %d\n", sum);

return 0;

}

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Questions?
Prof

. M
. Iq

ba
l B

ha
t (J

KHED)

	Slide Number 1
	Operators in C language
	Operators
	Arithmetic Operators
	Arithmetic Operators- Example
	Increment/Decrement Operators
	Increment/Decrement Operators- Example
	Relational Operators:
	Relational Operators- Example
	Logical Operators:
	Logical Operators- Example
	Assignment Operators:
	Assignment Operators- Example
	Bitwise Operators
	Bitwise Operators- Example
	Operator Precedence
	Operator Precedence
	Program Examples
	1. Calculate the area of a rectangle
	2. Calculate the sum and average of three numbers:
	 Check if a number is even or odd:
	4. Swap two numbers without using a temporary variable
	5. Check if a year is a leap year or not
	6. Convert temperature from Celsius to Fahrenheit
	7. Calculating Simple Interest:
	8. Calculate the sum of digits of a given number:
	Questions?

