
Arrays in C
Language

Presented by:

Muhammad Iqbal Bhat
Assistant Professor,

Department of Higher Education J&K (UT)

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Topics • Data Types in C

• Array Basics

• Declaration and
Initialization

• Accessing Array Data

• Sorting Arrays

• Multidimensional Arrays

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Data Types in C

Data Types

Fundamental
Types

Integer Types Float Types
Character

Types

Derived
Types

Arrays Functions Pointers

User-Defined
Types

Structures Unions EnumerationsProf
. M

. Iq
ba

l B
ha

t (J
KHED)

Understanding
Arrays:

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Motivation

• int marks_student1, marks_student2, marks student3;

If we have to write a program to get marks of 3 students, then

• int marks_student1, marks_student2, ….

Marks_student100;

What About 100 students

• int marks[100];

Use arrays:

What is an Array:

Concise and Efficient Programs:

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

What are arrays?

Arrays in C are a data
structure that allow you to
store multiple values of the

same data type in a
contiguous memory space.

All the elements of an array
are stored in consecutive

memory locations, and each
element can be accessed

using an index.

Arrays are useful for
handling large amounts of

data efficiently.

The size of an array is fixed
and must be specified when

the array is declared.

Arrays can only hold values
of a single data type.

Arrays are commonly used
in C programming to store
data such as lists, matrices,

and strings.
Prof

. M
. Iq

ba
l B

ha
t (J

KHED)

How arrays look like

90 80 70 50 20 98 20 60 80 90

0 1 2 3 4 5 6 7 8 9

1000 1002 1004 1006 1008 1010 1012 1014 1016 1018

marks[0] marks[1] marks[2] marks[3] marks[4] marks[5] marks[6] marks[7] marks[8] marks[9]

int marks[10];

value

index

address

access

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Some Array Terminology

marks[n + 2]

marks[n + 2]

marks[n + 2]

marks[n + 2] = 32;

Array name

Index - also called a subscript
- must be an int,

- or an expression that evaluates to an int

Indexed variable - also called an

element or subscripted variable

Value of the indexed variable

- also called an element of the arrayProf
. M

. Iq
ba

l B
ha

t (J
KHED)

Subscript Range (0 to n)

• Array subscripts use zero-numbering
• the first element has subscript 0

• the second element has subscript 1

• etc. - the nth element has subscript n-1

• the last element has subscript length-1

• For example: an int array with 4 elements

Subscript: 0 1 2 3

Value: 97 86 92 71

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Programming Tip:
Use Singular Array Names

• Using singular rather than plural names for arrays improves readability

• Although the array contains many elements the most common use of the name
will be with a subscript, which references a single value.

• It is easier to read:

• score[3] than

• scores[3]

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Initializing an Array's Values
in Its Declaration

• can be initialized by putting a comma-separated list in braces

• The length of an array is automatically determined when the values are explicitly initialized in the
declaration

• For example:

int marks[] = {90, 20, 40};

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Initializing Array Elements in a Loop

• A for loop is commonly used to initialize array elements

• For example:

int i; /*loop counter array index */

int a[10];

for(i = 0; i < 10; i++)

a[i] = 0;

• note that the loop counter/array index goes from 0 to length - 1

• it counts through length = 10 iterations/elements using the zero-
numbering of the array index

Programming Tip:

Do not count on default initial values for array elements

• explicitly initialize elements in the declaration or in a loop

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Types of Arrays

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Types of Arrays

• One Dimensional (1D)

• Two Dimensional (2D)

• Multidimensional (ND)

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Two Dimensional Arrays (2D arrays)

• A 2D array has two subscripts/indexes.

• One index for rows and another for columns

[0] [1] [2] [3]

[0] Subject Internal Marks External marks Total Marks

[1] Programming in C 30 60 90

[2] Data Structures 25 65 90

[3] Operating System 20 50 70

[4] Cloud Computing 15 50 65

Columns

Rows

[1][1]

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Two Dimensional Arrays (2D arrays)

• General Syntax for Declaration:

• datatype array_name [row_size][col_size];

[0] [1] [2] [3]

[0] Subject Internal Marks External marks Total Marks

[1] Programming in C 30 60 90

[2] Data Structures 25 65 90

[3] Operating System 20 50 70

[4] Cloud Computing 15 50 65

Columns

Rows

[1][1]

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Initializing 2D arrays

int array[2][3]= {

{1,2,3},

{4,5,6}

} ;

1
[0,0]

2
[0,1]

3
[0,2]

4
[1,0]

5
[1,1]

6
[1,2]

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Addition of Two Matrices

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Examples of
Arrays

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

1. Program to find the sum of elements in an
array:
#include <stdio.h>

int main() {

int array[5] = {1, 2, 3, 4, 5};

int sum = 0;

for (int i = 0; i < 5; i++) {

sum += array[i];

}

printf("The sum of the elements in the array is: %d\n", sum);

return 0;

}

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

2. Program to find the maximum element in
an array:
#include <stdio.h>

int main() {

int array[5] = {10, 23, 5, 17, 8};

int max = array[0];

for (int i = 1; i < 5; i++) {

if (array[i] > max) {

max = array[i];

}

}

printf("The maximum element in the array is: %d\n", max);

return 0;

}

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

3. Program to sort an array in ascending order:
#include <stdio.h>

int main() {

int array[5] = {3, 1, 4, 2, 5};

int temp;

for (int i = 0; i < 5; i++) {

for (int j = i + 1; j < 5; j++)
{

if (array[i] > array[j]) {

temp = array[i];

array[i] = array[j];

array[j] = temp;

}

}

}

printf("The sorted array in
ascending order is: ");

for (int i = 0; i < 5; i++) {

printf("%d ", array[i]);

}

printf("\n");

return 0;

}

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

4. Program to search for an element in an array::
#include <stdio.h>

int main() {

int array[5] = {10, 23, 5, 17, 8};

int element = 17;

int found = 0;

for (int i = 0; i < 5; i++) {

if (array[i] == element) {

found = 1;

break;

}

}

if (found) {

printf("The element %d is found
in the array.\n", element);

} else {

printf("The element %d is not
found in the array.\n", element);

}

return 0;

}

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

5. Program to reverse the elements in an array:
#include <stdio.h>

int main() {

int array[5] = {1, 2, 3, 4, 5};

int temp;

printf("The original array is: ");

for (int i = 0; i < 5; i++) {

printf("%d ", array[i]);

}

for (int i = 0, j = 4; i < j; i++, j--) {

temp = array[i];

array[i] = array[j];

array[j] = temp;

}

printf("\nThe reversed array is:
");

for (int i = 0; i < 5; i++) {

printf("%d ", array[i]);

}

printf("\n");

return 0;

}Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Questions?
Prof

. M
. Iq

ba
l B

ha
t (J

KHED)

Sorting an Array

• Sorting a list of elements is another very common problem (along with
searching a list)

• sort numbers in ascending order

• sort numbers in descending order

• sort strings in alphabetic order

• etc.

• There are many ways to sort a list, just as there are many ways to
search a list

• Selection sort

• one of the easiest

• not the most efficient, but easy to understand and program

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Selection Sort Algorithm
for an Array of Integers

To sort an array on integers in ascending order:

1. Find the smallest number and record its index

2. swap (interchange) the smallest number with the first
element of the array

• the sorted part of the array is now the first element

• the unsorted part of the array is the remaining
elements

3. repeat Steps 2 and 3 until all elements have been placed

• each iteration increases the length of the sorted part
by one

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Selection Sort Example

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

7 6 11 17 3 15 5 19 30 14

Problem: sort this 10-element array of integers in ascending order:

1st iteration: smallest value is 3, its index is 4, swap a[0] with a[4]

7 6 11 17 3 15 5 19 30 14before:

3 6 11 17 7 15 5 19 30 14after:

2nd iteration: smallest value in remaining list is 5, its index is 6, swap a[1] with a[6]

3 6 11 17 7 15 5 19 30 14

3 5 11 17 7 15 6 19 30 14

How many iterations are needed?

Key:

smallest remaining value

sorted elements

Chapter 10 Java: an Introduction to Computer Science & Programming - Walter Savitch 28

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Example: Selection Sort

• Notice the precondition: every array element has a value

• may have duplicate values

• broken down into smaller tasks
• "find the index of the smallest value"

• "interchange two elements"

• private because they are helper methods (users are not
expected to call them directly)

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Selection Sort Code/**

*Precondition:

*Every indexed variable of the array a has a value.

*Action: Sorts the array a so that

*a[0] <= a[1] <= ... <= a[a.length - 1].

**/

public static void sort(int[] a)

{

int index, indexOfNextSmallest;

for (index = 0; index < a.length - 1; index++)

{//Place the correct value in a[index]:

indexOfNextSmallest = indexOfSmallest(index, a);

interchange(index,indexOfNextSmallest, a);

//a[0] <= a[1] <=...<= a[index] and these are

//the smallest of the original array elements.

//The remaining positions contain the rest of

//the original array elements.

}

}

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Insertion Sort

• Basic Idea:

• Keeping expanding the sorted portion by one

• Insert the next element into the right position in the sorted portion

• Algorithm:

1. Start with one element [is it sorted?] – sorted portion

2. While the sorted portion is not the entire array

1. Find the right position in the sorted portion for the next element

2. Insert the element

3. If necessary, move the other elements down

4. Expand the sorted portion by oneProf
. M

. Iq
ba

l B
ha

t (J
KHED)

Insertion Sort: An example

• First iteration
• Before: [5], 3, 4, 9, 2
• After: [3, 5], 4, 9, 2

• Second iteration
• Before: [3, 5], 4, 9, 2
• After: [3, 4, 5], 9, 2

• Third iteration
• Before: [3, 4, 5], 9, 2
• After: [3, 4, 5, 9], 2

• Fourth iteration
• Before: [3, 4, 5, 9], 2
• After: [2, 3, 4, 5, 9]

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Bubble Sort

• Basic Idea:

• Expand the sorted portion one by one

• “Sink” the largest element to the bottom after comparing adjacent elements

• The smaller items “bubble” up

• Algorithm:

• While the unsorted portion has more than one element

• Compare adjacent elements

• Swap elements if out of order

• Largest element at the bottom, reduce the unsorted portion by one
Prof

. M
. Iq

ba
l B

ha
t (J

KHED)

Bubble Sort: An example

• First Iteration:
• [5, 3], 4, 9, 2 → [3, 5], 4, 9, 2
• 3, [5, 4], 9, 2 → 3, [4, 5], 9, 2
• 3, 4, [5, 9], 2 → 3, 4, [5, 9], 2
• 3, 4, 5, [9, 2] → 3, 4, 5, [2, 9]

• Second Iteration:
• [3, 4], 5, 2, 9 → [3, 4], 5, 2, 9
• 3, [4, 5], 2, 9 → 3, [4, 5], 2, 9
• 3, 4, [5, 2], 9 → 3, 4, [2, 5], 9

• Third Iteration:
• [3, 4], 2, 5, 9 → [3, 4], 2, 5, 9
• 3, [4, 2], 5, 9 → 3, [2, 4], 5, 9

• Fourth Iteration:
• [3, 2], 4, 5, 9 → [2, 3], 4, 5, 9

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

How to Compare Algorithms in Efficiency (speed)

• Empirical Analysis

• Wall-clock time

• CPU time

• Can you predict performance before implementing the algorithm?

• Theoretical Analysis

• Approximation by counting important operations

• Mathematical functions based on input size (N)

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

How Fast/Slow Can It Get?
(10G Hz, assume 1010 operations/sec)

N Nlog2N N2 2N

10 33 100 1,024

100

(10-8 sec)

664 10,000 1.3 x 1030

(4 x1012 years)

1,000 9,966 1,000,000 Forever??

10,000 132,877 100,000,000 Eternity??

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Theoretical Analysis (Sorting)

• Counting important operations

• Comparisons (array elements)

• >, <, …

• Swaps/moves (array elements)

• 1 swap has 3 moves

• Comparison is the more important operation—could be expensive

• Size of input (N) = Number of array elements

• Three cases for analysis

• Worst case (interesting, popular analysis)

• Best case (not so interesting)

• Average case (discussed in another course)

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Selection Sort

• Comparisons

• N – 1 iterations

• First iteration: how many comparisons?

• Second iteration: how many comparisons?

• (N – 1) + (N – 2) + … + 2 + 1 = N(N-1)/2 = (N2 – N)/2

• Moves (worst case: every element is in the wrong location)

• N – 1 iterations

• First iteration: how many swaps/moves?

• Second iteration: how many swaps/moves?

• (N – 1) x 3 = 3N - 3 Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Insertion Sort

• Comparisons (worst case: correct order)

• N – 1 iterations

• First iteration: how many comparisons?

• Second iteration: how many comparisons?

• 1 + 2 + … + (N – 2) + (N – 1) = N(N-1)/2 = (N2 – N)/2

• Moves (worst case: reverse order)

• N – 1 iterations

• First iteration: how many moves?

• Second iteration: how many moves?

• 3 + 4 + … + N + (N + 1) = (N + 4)(N - 1)/2 = (N2 + 3N - 4)/2Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Bubble Sort

• Comparisons

• N – 1 iterations

• First iteration: how many comparisons?

• Second iteration: how many comparisons?

• (N – 1) + (N – 2) + … + 2 + 1 = N(N-1)/2 = (N2 – N)/2

• Moves (worst case: reverse order)

• N – 1 iterations

• First iteration: how many swaps/moves?

• Second iteration: how many swaps/moves?

• [(N – 1) + (N – 2) + … + 2 + 1] x 3 = 3N(N-1)/2 = (3N2 – 3N)/2Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Summary of Worst-case Analysis

Comparisons

(more important)

Moves

Selection (N2 – N)/2 3N - 3

Insertion (N2 – N)/2 (N2 + 3N - 4)/2

Bubble (N2 – N)/2 (3N2 – 3N)/2
Prof

. M
. Iq

ba
l B

ha
t (J

KHED)

Sorting Algorithm Tradeoffs

• Easy to understand algorithms

• not very efficient

• less likely to have mistakes

• require less time to code, test, and debug

• Selection, Insertion, Bubble Sorting algorithms

• Bubble Sort is the easiest to implement

• Complicated but more efficient

• useful when performance is a major issue

• programming project for Chapter 11 describes a more efficient
sorting algorithm

"Getting the wrong result is always inefficient."

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

	Slide 1: Arrays in C Language
	Slide 2: Topics
	Slide 3: Data Types in C
	Slide 4: Understanding Arrays:
	Slide 5: Motivation
	Slide 6: What are arrays?
	Slide 7: How arrays look like
	Slide 8: Some Array Terminology
	Slide 9: Subscript Range (0 to n)
	Slide 10: Programming Tip: Use Singular Array Names
	Slide 11: Initializing an Array's Values in Its Declaration
	Slide 12: Initializing Array Elements in a Loop
	Slide 13: Types of Arrays
	Slide 14: Types of Arrays
	Slide 15: Two Dimensional Arrays (2D arrays)
	Slide 16: Two Dimensional Arrays (2D arrays)
	Slide 17: Initializing 2D arrays
	Slide 18: Addition of Two Matrices
	Slide 19: Examples of Arrays
	Slide 20: 1. Program to find the sum of elements in an array:
	Slide 21: 2. Program to find the maximum element in an array:
	Slide 22: 3. Program to sort an array in ascending order:
	Slide 23: 4. Program to search for an element in an array::
	Slide 24: 5. Program to reverse the elements in an array:
	Slide 25: Questions?
	Slide 26: Sorting an Array
	Slide 27: Selection Sort Algorithm for an Array of Integers
	Slide 28: Selection Sort Example
	Slide 29: Example: Selection Sort
	Slide 30: Selection Sort Code
	Slide 31: Insertion Sort
	Slide 32: Insertion Sort: An example
	Slide 33: Bubble Sort
	Slide 34: Bubble Sort: An example
	Slide 35: How to Compare Algorithms in Efficiency (speed)
	Slide 36: How Fast/Slow Can It Get? (10G Hz, assume 1010 operations/sec)
	Slide 37: Theoretical Analysis (Sorting)
	Slide 38: Selection Sort
	Slide 39: Insertion Sort
	Slide 40: Bubble Sort
	Slide 41: Summary of Worst-case Analysis
	Slide 42: Sorting Algorithm Tradeoffs

