
Pointers in C
By

Prof. Muhammad Iqbal Bhat
Department of Higher Education

Government Degree College Beerwah

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Topics:

What are pointers

1

Declaration and

initialization of

Pointers

2

Accessing Value

of Pointers

3

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

What are Pointers?

In C, a pointer is a variable that stores the memory address of another
variable.

Pointers allow you to indirectly access and manipulate data in memory.

A variable name directly references a value, and a pointer indirectly references a
value, as in the following diagram:

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Declaration and Initialization of Pointers?

Declare a pointer using the * operator and a data type

(e.g. int, char*, float*)

Initialize a pointer by assigning it the memory address of a
variable using the "&" operator

(e.g. int* p = &x;)

Declaring a pointer variable involves specifying the data type that
the pointer will point to. The "*" operator is used to indicate that a
variable is a pointer.

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Pointer Operators and their relationship:

The unary address operator (&) returns the address of its operand.

For example, given the following definition of y: int y = 5;

the statement int *yPtr = &y; initializes pointer variable yPtr
with variable y’s address—yPtr is then said to “point to” y.

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Pointer Operators and their relationship:

You apply the unary indirection operator (*), also called the dereferencing
operator, to a pointer operand to get the value of the object to which the pointer
points

printf("%d", *yPtr);

Using * in this manner is called dereferencing a pointer.

Dereferencing a pointer that has not been initialized with or
assigned the address of another variable in memory is called a

dangling pointer and is an error.

Dangling Pointers Can cause:

*cause a fatal execution-time error,

• accidentally modify important data and allow the program to
run to completion with incorrect results, or

• lead to a security breach.

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Example Demonstrating the & and * Operators

#include <stdio.h>

int main(void) {

int a = 7;

int *aPtr = &a; // set aPtr to the address of a

printf("Address of a is %p\nValue of aPtr is %p\n\n", &a, aPtr);

printf("Value of a is %d\nValue of *aPtr is %d\n\n", a, *aPtr);

printf("Showing that * and & are complements of each other\n");

printf("&*aPtr = %p\n*&aPtr = %p\n", &*aPtr, *&aPtr);

}

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Pointer Increments and Scale Factor

Pointer increments use the ++ and -- operators to move a
pointer to the next or previous memory location.

Incrementing or decrementing a pointer moves it to the next
or previous memory location of the same data type.

Scale factors are used to account for the size of the data type
being pointed to when incrementing or decrementing a
pointer.

The scale factor is determined by the size of the data type
being pointed to

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Pointer Increments and Scale Factor

• When you add an integer to or subtract one from a pointer,
the pointer increments or decrements by that integer times
the size of the object to which the pointer refers.

• vPtr += 2; would produce 3008 (3000 + 2 * 4), assuming
int is stored in 4 bytes

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Pointer Increments and Scale Factor

• If vPtr contains the location 3000 and v2Ptr contains the
address 3008, the statement

• x = v2Ptr - vPtr;

• assigns to x the number of array elements between vPtr and
v2Ptr, in this case, 2 (not 8).

• Pointer arithmetic is undefined unless performed on elements
of the same array.

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Array of Pointers:

• Arrays may contain pointers.

• A common use of an array of pointers is to form an array of
strings, referred to simply as a string array. Each element in a
C string is essentially a pointer to its first character.

• So, each entry in an array of strings is actually a pointer to a
string’s first character.

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Calculate the sum of an array using pointers
#include <stdio.h>

int sum(int *arr, int size) {

int total = 0;

for (int i = 0; i < size; i++) {

total += *(arr + i);

}

return total;

}

int main() {

int arr[5] = {1, 2, 3, 4, 5};

int size = sizeof(arr) / sizeof(int);

int total = sum(arr, size);

printf("The sum of the array is %d\n", total);

return 0;

}

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Allocate memory dynamically using pointers
#include <stdio.h>

#include <stdlib.h>

int main() {

int *ptr;

int n = 5;

ptr = (int*) malloc(n * sizeof(int));

if (ptr == NULL) {

printf("Memory allocation failed\n");

return 1;

}

for (int i = 0; i < n; i++) {

*(ptr + i) = i + 1;

}

for (int i = 0; i < n; i++) {

printf("%d ", *(ptr + i));

}

printf("\n");

free(ptr);

return 0;

}

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Questions?

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

	Slide 1: Pointers in C
	Slide 2: Topics:
	Slide 3: What are Pointers?
	Slide 4: Declaration and Initialization of Pointers?
	Slide 5: Pointer Operators and their relationship:
	Slide 6: Pointer Operators and their relationship:
	Slide 7: Example Demonstrating the & and * Operators
	Slide 8: Pointer Increments and Scale Factor
	Slide 9: Pointer Increments and Scale Factor
	Slide 10: Pointer Increments and Scale Factor
	Slide 11: Array of Pointers:
	Slide 12: Calculate the sum of an array using pointers
	Slide 13: Allocate memory dynamically using pointers
	Slide 14: Questions?

