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Cryptography is a branch of mathematics that deals with the transformation of

data. Cryptographic algorithms are used in many s'in information security
and network security. \2\

Cryptography is the practice and study of tech&@lfes for securing communication
and data in the presence of adversaries. ,5\.
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Figure 30.1 Cryptography components
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Figure 30.2 Categories of cryptography
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Figure 30.3 Symmetric-key cryptography
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Figure 30.4 Asymmetric-key cryptography
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Figure 30.5 Keys used in cryptography
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Figure 30.6 Comparison between two categories of cryptography
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Symmetric-key cryptography started thousands of years
ago when people needed to e;)gé’@ge secrets (for

example, in a war). We still mainiy use symmetric-key

cryptography in our network s\g@u\*ity.
Q}‘b

lopics discussed in this“gé(c}‘tion:

Traditional Ciphers \S
Simple Modern Ciphess*
Modern Round Ciphers
Mode of Operation
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Cryptography — some notations

* Y = Ek(X) denotes that Y is the encryption of the plaintext X using the key K
X =D«Y) denotes that X is the decryption of the cipher text Y using the key K

Data
block
(plaintext)

DK(EK(Y))EY

Secret key shared by
sender and reCipient

| Encryption

Algorithm

X=DK,Y)

|
K
Y = E(K, X)
Decryption
Algorithm J
Encrypted
block

(ciphertext)

Data
block
(plaintext)
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Cryptanalysis and Brute-Force Attack

Cryptanalysis: Cryptanalytic attacks rely on the nature of the algorithm plus perhaps some knowledge of the
general characteristics of the plaintext or even some sample plaintext—ciphertext pairs. This type of attack exploits
the characteristics of the algorithm to attempt to deduce a specific plaintext or to deduce the key being used.

Brute-force attack: The attacker tries every possible key on a piec@phertext until an intelligible translation into

plaintext is obtained. On average, half of all possible keys must b{ ied to achieve success.
X

(/N

v q
Y = E(K, X)

Secure channel
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Cryptanalyst Attacks

Table 3.1 Types of Attacks on Encrypted Messages

Ciphertext Only

m Encryption algorithm
m Ciphertext

Known Plaintext

m Encryption algorithm
m Ciphertext
® One or more plaintext—ciphertext pairs formed with the secret key

Chosen Plaintext

m Encryption algorithm

m Ciphertext

m Plaintext message choscn by cryptanalyst, together with its corresponding
ciphertext generated with the secret key

Chosen Ciphertext m Encryption algonithm
m Ciphertext
m Ciphertext cnosen by cryptanalyst, together with its corresponding decrypted
plaintext generated with the secret key
Chosen Text m Encryption algorithm

m Ciphertext

m Plaintext message chosen by cryptanalyst, together with its corresponding
ciphertext generated with the secret key

m Ciphertext chosen by cryptanalyst, together with its corresponding decrypted
plaintext generated with the secret key
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Figure 30.7 Traditional ciphers
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I Substitution Ciphers I

A substitution cipher replaces one symbol with
another.
A substitution technique is one in which the
letters of plaintext are replaced by other letters °
or by numbers or symbols.
If the plaintext i1s viewed as a sequence of bits,
then substitution involves replacing plaintext
bit patterns with ciphertext bit patterns.




Example 30.1
The following shows a plaintext and its corresponding
ciphertext. Is the cipher monoalphabetic?

Plaintext: HELLO
Ciphertext: KHOOR

Solution
The cipher is probably monoalphabetic because both
occurrences of L's are encrypted as O's.

30.16



Example 30.2
.
The following shows a plaintext and its corresponding
ciphertext. Is the cipher monoalphabetic?

Plaintext: HELLLO
Ciphertext: ABNZF

Solution
The cipher is notr monoalphabetic because each

occurrence of L is encrypted by a different character. The
first L is encrypted as N; the second as Z.

30.17
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Example 30.3
Use the shift cipher with key = 15 to encrypt the message
“HELLO.”

Solution

We encrypt one character at a time. Each character is
shifted 15 characters -dlown. Letter H is encrypted to W.
Letter E is encrypted io T. The first L is encrypted to A. The
second L is also encrypted to A. And O is encrypted to D.
The cipher text is WITAAD.
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Example 30.4
Use the shift cipher with key = 15 to decrypt the message
“WTAAD.”

Solution

We decrypt one character at a time. Each character is
shifted 15 characters vp. Letter W is decrypted to H. Letter
T is decrypted to E. The first A is decrypted to L. The
second A is decrypted to L. And, finally, D is decrypted to
O. The plaintext is HELLO.

30.20
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Polyalphabetic substitution ciphers

Well, one way is to use more than one alphabet, switching between them svstematically. This type of cipher is called a
polyalphabetic substitution cipher ("poly" is the Greek root for "many"). The difference, as you will see, is that
frequency analysis no longer works the same way to break these

Idea: use different monoalphabetic substitutions as one proceeds through the
plaintext

* Makes cryptanalysis harder with more alphabets (substitutions) to guess and
flattens frequency distribution

* A key determines which particular substitution is used in each step
* BExample: the Vigenere ciphar

27
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Vigenere

* Proposed by Giovan Batista Belaso(1553) and reinvented by Biaisede Vigenere (1586), called “le
chiffreindéchiffrable”for 300 years

» Effectively multiple Caesar ciphers
e Keyisaword K=kl k2 ... kd

* Encryption

* Read one letter t from the plaintext and one letter k from the key

* tis encrypted according to the Caesar cigher with key k

* When the key word is finished, start the reading of the key from the beginning
* Decryption works in reverse

* Example: key is “bcde”; “testing” is encrypted as “ugvxjpj”

* Note that the two ‘t” are encrypted by different letters: ‘u’ and ‘x’

* The two ‘j’ in the crypto text come from different plain letters: ‘i’ and ‘g’

28



Table 2.3 The Modern Vigenére Tablean
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Example Vigenere

Example

e ewrite the plaintext out

* ewrite the keyword repeated above it

e euse each key letter as a Caesar cipher key
e eencrypt the corresponding plaititext letter
* eeg using keyword deceptive

* plain: wearediscoverecisaveyourself
* key: deceptivedeceptivedeceptive

* cipher: ZICVTWQNGRZGVTWAVZHCQYGLMGJ
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Security of Vigenere Ciphers

* Its strength lays in the fact that each plaintext letter has multiple
cipher text letters
» Letter frequencies are obscured (but not tataliy lost)

* Breaking Vigenere
* |If we need to decide if the text wa<'encrypted with a monoalphabetic cipher
or with Vigenere:

e Start with letter frequencies

* See if it “looks” monoal@habetic or not: the frequencies should be those of letters in English
texts

* If not, then it is Vigenere
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One time pad

The idea of the auto key system can be extendeti to create an unbreakable
system: one-time pad

Idea: use a (truly) random key as long as the plaintext

It is unbreakable since the cipher text hears no statistical relationship to the
plaintext

Moreover, for any plaintext & any cipher text there exists a key mapping one to
the other

Thus, a cipher text can be aecrypted to any plaintext of the same length

* The cryptanalyst is in an impossible situation
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One time pad example

THE BRITISH ARE COMING
DKJFOISJOGIJPAPDIGN

Step 1-
s THEBRITISHARECOMING
DKJFOISJOGIJPAPDIGN
Step 2 - Determine an algorithm
* A=0
* B=1
e C=2
* D=3
* E=4
* F=5

It follows the formula "(plaintext + key) MOD alphabet length":

33



One time pad cont’d

Step 3 - Perform the encryption

(T(19)+D(03)=22) MOD 26 =22 = W
(H(07)+K(10)=17) MOD 26 = 17 =R
(E(04)+J(09)=13) MOD 26 = 13 =N
(B(01)+F(05)=06) MOD 26 = 06 = G
(R(17)+0(14)=31) MOD 26 =05 = F
(1(08)+1(08)=16) MOD 26 = 16 = Q
(T(19)+5(18)=37) MOD 26 = 11 =L
(1(08)+(09)=17) MOD 26 = 17 = R
(S(18)+0(14)=32) MOD 26 = 06 = G
(H(07)+G(06)=13) MOD 26 = 13 =N
(A(00)+1(08)=08) MOD 26 = 08 = |
(R(17)+J(09)=26) MOD 26 =00 = A
(E(04)+P(15)=19) MOD 26 =19 =T
(C(02)+A(00)=02) MOD 26 =02 = C
(O(14)+P(15)=29) MOD 26 =03 =D
(M(12)+D(03)=15) MOD 26 = 15 = P
(1(08)+1(08)=16) MOD 26 = 16 = Q
(N(13)+G(06)=19) MOD 26 =19 =T
(G(06)+N(13)=19) MOD 26 =19 =T
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Pad cont’d

We now show two different decryptions iising two different
keys:

ciphertext: ANKYODKYUREPFIBYOJDSPLREYIUNOFDOIUERFPLUYTS
key: pxiImvmsydofuyrvzwc tnlectiecvgdupahfzzimnyih
plaintext: mr mustard with-thie candlestick in the hall
ciphertext: ANKYODKYUREPF/BYOJDSPLREYIUNOFDOIUERFPLUYTS
key: mfugpmiydgaxgaufhkllimhsqdqogtewbqfgyovuhwt
plaintext: miss sca¢let with the knife in the library
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Pad cont’d

* Two plausible plaintexts are produced.
* How is the cryptanalyst to decide which'is the correct decryption

* If the actual key were produced in a-truly random fashion, then the
cryptanalyst cannot say that one of these two keys is more likely than
the other.

36



Security of the one-time pad

* The security is entirely given by the randoniness of the key

* If the key is truly random, then the ciphertext is random
* A key can only be used onceif the cryptanalyst-is to be kept in the“dark”

* Problems with this “perfect” cryptasystem

* Making large quantities of truly randzimcharacters is a significant task

* Key distribution is enormously difricult: for any message to be sent, a key of equal length
must be available to both partiss

37



Other technigue of encryption: Transpositions

We have considered so far substitutions to hide the plaintext: each
letter is mapped into a letter according t¢ some substitution

* Different idea: perform some sort of ixermutation on the plaintext
letters

* Hide the message by rearranging the letter order without altering the
actual letters used

* The simplest such technicue: rail fence technique

38
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Figure 30.8 Transposition cipher
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Example 30.5
Encrypt the message “HELLO MY DEAR,” using the key
shown in Figure 30.8.

Solution
We first remove the spaces-in the message. We then divide

the text into blocks of four characters. We add a bogus
character Z at the.end of the third block. The result is

HELL OMYD EARZ. We create a three-block ciphertext
ELHLMDQOYAZER.

30.41



Example 30.6
Using  Example  30.5, decrypt the  message
“ELHLMDQOYAZER”.

Solution

The result is HELL OMYDEARZ. After removing the bogus
character and combiniug the characters, we get the
original message “HiZLLO MY DEAR.”

30.42



Rail Fence cipher

Idea:write plaintext letters diagonally over a nuiriber of rows, then read off
cipher row by row

E.g., with a rail fence of depth 2, to encrvstthe text “meet me after the toga
party”, write message out as:

mematr ht gpry
etefe t e o a a t

Ciphertext is read from the above row-by-row:
e MEMATRHTGPRYETEFETEOAAT

Attack: this is easily recognized because it has the same frequency distribution as
the original text

43



Row transposition ciphers

* More complex scheme: row transpositionl®

* Write letters of message out in rows overa specified number of
columnspl

* Reading the cryptotext column-by-=column, with the columns
permuted according to some kev

 Example: “attack postponed until two am” with key 4312567:

* Key: 4212567
* Plaintext: attackp
ostpone
duntildt

Woamxyz

44



Row transposition ciphers

* Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ

* If we number the letters in the plaintextfrom 1 to 28, then the result
of the first encryption is the following permutation of letters from
plaintext:03 10172404 11 18 2546209162301 081522051219

26 06 13 2027 07 14 21 280
* Note the regularity of that sequence!l

* Easily recognized!

45



lterating the encryption makes it more secure

* |dea: use the same scheme once more to increase security

* Key: 4312567

* Input: TTNAAPT
MTS UOA @
DWCOIXK
NLYPETZ

* Output: NSCYAUOPTTWLTNIDNAOIEPAXTTOKZ

» After the second transposition we get the following sequence of letters:

* 17090527241612071002222003251512042319141101 2621180806 28

* This is far less structured and so, more difficult to cryptanalyze
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Two Important Properties of Ciphers

* In 1949, Claude Shannon first proposed the ideas of confusion and diffusion in
the operation of a cipher.

Diffusion means that if we change a single bit of Confusion means that each binary digit

the plaintext, then (statistically) half of the bits Q\ (bit) of the ciphertextshould depend on
%

in the ciphertext should change, and similarly, if Key \2\ several parts of the key, obscuring the

we change one bit of the ciphertext, then O—‘i' Q‘k . connections between the two.

approximately one half of the plaintext bits
should change.
e.g. P-box or transposition cipher

e.g. S-box or substitution cipher

X
o
I@%nfusion

Dli‘l'usuzunK




Confusion vs Diffusion

Confusion

Confusion is the property of a cipher whereby it
provides no clue regarding the relationship
between the ciphertext and the key.

Confusion means that each binary digit (bit) of
the ciphertext should depend on several parts
of the key, obscuring the connections between
the two.

This property makes it difficult to find the key
from the ciphertext and if a single bit in a key is
changed, most or all the bits in the ciphertiext
will be affected.

Confusion increases the ambiguity of
ciphertext, and it is used by bath block and
stream cipher.

A Strong substitution (S-boxes) function

enhances confusion

Diffusion

Diffusion is concerned with the relationship
between the plaintext and the corresponding
cipher text.

Diffusion means that if we change a single bit of
the plaintext, then half of the bits in the ciphertext
shiouid change, and similarly, if we change one bit
or the ciphertext, then approximately one-half of
the plaintext bits should change.

Since a bit can have only two states, when they are
all re-evaluated and changed from one seemingly
random position to another, half of the bits will
have changed state.

A Strong transposition (P-boxes) enhances

diffusion.
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Stream Ciphers

* Stream cipher is one that encrypts a digita\@ata stream one bit (or

byte) at a time \2{0
 Example: auto keyed Vigenere cipher and\gkre Vernam cipher
>
Q)‘Q
. > ;
Kev Bit-stream 0 Key Bit-stream
( Kk) generation \0\ ( Kk) generation
algorithm : algorithm
Plaintext Ciphertext Plaintext
) 9 () t )




Block Ciphers

* Block cipher is one in which the plaintext is divided into blocks and
Ione br!ock is encrypted at one time producing a ciphertext of equal
engt

* Similar to substitution ciphers on very big characters: 64 bits or 128 bits are
typical block lengths

bbits bbits
Plaintext »| Ciphertext

Key Encr;otion Key Decryption

(K) algorithm (K) algorithm
Ciphertext Plaintext

i . i '
= = " =

b bits b bits




Block Cipher Vs Stream Cipher

Block Cipher

* Block Cipher Converts the plain
text into cipher text by taking plain
text’s block at a time.

* Block cipher uses either 64 bits or
more than 64 bits.

* Block cipher Uses confusion as well !

as diffusion.

* In block cipher, reverse encrypted
text is hard.

* The algorithm modes which are
used in block cipher are: ECB
(Electronic Code Book) and CBC
(Cipher Block Chaining).

Stream Cipher

* Stream Cipher Converts the plaint
text into_ cipher text by taking 1
byte of plain text at a time.

* While stream cipher uses 8 bits.

* Wnile stream cipher uses only
confusion.

* While in stream cipher, reverse
encrypted text is easy.

* The algorithm modes which are
used in

e stream cipher are: CFB (Cipher
Feedback) and OFB (Output
Feedback).




Modern Symmetric-key ciphers

 Modern Block ciphers: A symmetric-key modern block cipher encrypts an n-bit block of plaintext
or decrypts an n-bit block of ciphertext. The encryption or decryption algorithm uses a k-bit key.
The decryption algorithm must be the inverse of the encryption algorithm, and both operations
must use the same secret key so that Bob can retrieve the'nriessage sent by Alice.

n-bit plaintext n-bit plaintext

= k-bit key Decryption

n-bit ciphertext n-bit ciphertext




Components of Modern
Block Ciphers




S-Box

An S-box (substitution box) can be thought of as a mimature
substitution cipher, but 1t substitutes.hits. Unlike the traditional
substitution cipher, an S-box can have a different number of inputs
and outputs.

N input bits

oo 4 b b4

A function that matches N inputs
to M outputs

M output bits




S-Box

4-bit input

l

0000
0001
0010
0011
(N
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

1110
0100
1101
0001
0010
1111
1011
1000
0011
1010
0110
1100
0101
1001
0000
0111

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

1110
0011
0100
1000
0001
1100
1010
1111
0111
1101
1001
0110
1011
0010
0000
0101




P-Box

A P-box (permutation box) parallels the traditional
transposition cipher for characters, butat transposes bits

liii/i
oY or v
| b Loy

30.59



Exclusive-OR operation (XOR)

An 1mportant component 1n most block ciphers 1s the exclusive-OR
in which the output is 0 if the two inputs are the same, and the output

operation,
1s 1 if the

two 1nputs are different. In modern block <iphers, we use n exclusive-OR

operations to combine an n-bit data piece with an n-bit key. An excl

usive-OR

operation 1s normally the only unit-where the key 1s applied. The other

components are normally based on prédefined functions.

n bits

n bits

Exclusive-OR

30.60



b7|bg|bs|bg|b3|ba|by|bg

Shift left (3 bits)

ba|b3|b2]b1[bo[b7helbs

Split

bs|bg|b3 (b2

Combine

30.61
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Input (plaintext) Output (plaintext)

The Feistel Cipher

* Feistel proposed [FEIS73] that we
can approximate the ideal block
cipher by utilizing the concept of
a product cipher, which is the
execution of two or more simple
ciphers in sequence in such a way
that the final result or product is
cryptographically stronger than
any of the component ciphers.

Round 1

Round 16

Round 2

Round 15

—i"—

Round 15

* This design model can have
invertible, non-invertible, <-and
self-invertible components.
Additionally, the Feistel block
cipher uses the same encryption
and decryption algorithms. Outpu cighertexs It ciphrtex)

Round

Round 16

Round 1




Feistel Cipher Structure

* Block size: larger block sizes mean greater security
* Key Size: larger key size means greater security
* Number of rounds: multiple rounds offer increasing security

- Subkey generation algorithm: greater complexity will lead to
greater difficulty of cryptanalysis.

* Fast software encryption/decryption: the speed of execution
of the algorithm becomes a concern
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Sub key

* Sub keys are created from the original key
by a kev expansion algorithm designed for
multipgie-round ciphers called a key
schiadule. A popular method of combining
a sub key with data is bitwise XOR. In each
round, after the key mixing, the data is
scrambled further using substitution and
permutation functions.



DES
Data Encryptien Standar

@.

Secret key shared by
sender and recipient

¥

K
Y =E(K, X)
X
Data Encrypted Data
block block block

(plaintext) (ciphertext) (plaintext)



Adopted in 1977 by the National Bureau of Standards (US), nowadays NIST

Originates from an IBM proje

Project ended in
1971 with the
development of
LUCIFER (key
128 bits)

LUCIFER was
then refined
with the help of
NSA to produce
DES (key 56 bits)

O

Immed;ate
criticism: the
reduction in key
.ength was
enormous and
the internal
details of the
design were (and
remained)
classified
information

1994: DES is
reaffirmed as a
standard for 5

more years

%{f?om late 1960s led by Feistel

1999: DES

should only be AL
used for legacy Hepplzeed (2
AES (Advanced
systems and Encrvotion
3DES should yp
: Algorithm).
replace it.



e Data Encrypti andard (DES)

* The mggWidely used encryption
schemg

. T@Igorithm is reffered to the Data

\&cryption Algorithm (DEA)
\&Q DES is a block cipher

* The plaintext is processed in 64-bit
c‘)\~ blocks

Q& * The key is 56-bits in length




2- Then follow 16
1-The plaintext (64 identical rounds -
bits \ses in each round a
D E S thro\zg&rf initial different sub key is
pe(El tation IP(on used; each sub key

Q 64 bits) is generated from
X

the key

encryption
scheme

4- Apply the
inverse of the
initial permutation
IP-1(on 64 bits)




Figure 30.13 DES

DES

64-bit plaintext

}

Initial permutation

Final permutation

Round
key
generator

- . |

< 64-bit key

64-bit ciphertext
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Figure 30.13 DES

64-bit plaintext

32 bits

32 bits

32 bits

32 bits

DES

Y

Initial pervautation |

Round 1 I— o
[\ % " 48bit

K;
Round i -
48-bit
: K 16
R dlée >
oun | 48_bit

Final permutation

Each round

64-bit ciphertext

Round-key generator

56-bit

cipher key
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Figure 30.14 One round in DES ciphers

Round,

|- T T - T - - - - =-=-=-=-=-======7 |

: 32 bits 32 bits |

: L, R; :

I I

|

| 32 bits |

. l |
I

' | Kp
: f(R; K) ﬁl (48 bits)
| I

: 32 bits !

: XOR |

|

. l

| I

: Y B 2K I

I Lisq hy. 1 :

! 32 bits 32 bits :
- ________ 1

a. Encryption round

Roundi
ol N
|
|\ Dits 32 bits |
: E Li RI :
: A |
| 32 bits |
' I
i K
: f(Ri: K,) -I (48 bits)
|
|
: 32 bits |
| XOR !
| |
! |
: |
! L Ris1 :
I 32 bits 32 bits :
|

b. Decryption round
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DES Function

K, (48 bits)

\ .
[sI[s|is][s]s]s][s]s]

32 bits

Straight P-box

Out
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DES function

- 32 bits -

Expansion/permutation
(E table)

Left shift(s)

Substition/choice
(S-box)

Permutation

(P)

Figure 2.4 Single Round of DES Algorithm




Sub key generation

Before round 1 of DES, they key is permuted according to a table labeled Permuted
Choice One —the resulting 56-bit key is split iinto its two 28-bit halves labeled COand

DO

In each round, Ci-1 and Di-1 are separately subjected to a circular left shift of one
or two bits according to the tapie on the next slide —the shifted values will be input

to next round

The shifted values serve as input to Permuted Choice Two which produces a 48-bit
output: the sub key of the current round



e M =0000 0001 0010 0011 0100
0101 01150111 1000 1001 1010
1011 1100 1101 1110 1111

Example of

DES

e K=00010011 00110100 01010111
01111001 10011011 10111100
11011111 11110001




Step 1: Create 16 sub keys, each of which is 48-bits long.

* Inthe general scheme of DES is shown that a 64-bit key is used —the bits of the key are numbered from 1 to 64.

* The algorithm ignores every 8, 16, 24, 32, 40, 48, 56, and 64 bit —thus, the key for DES is effectively 56-bit long
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Example: From the original 64-bit key
{5

e K=000100119911010001010111 01111001
10011011.1911110011011111 11110001

SU b keyS e we get the 56-bit permutation

) N
cont'd K+ =£111000 0110011 0010101 0101111
%1?)1010 1011001 1001111 0001111

| Next, split this key into left and right halves,
CO and DO, where each half has 28 bits.




Example: From the permuted key K+, we get
CO=11110000110011 0010101 0101111
D0=0101010 1011001 1001111 0001111

C1=1110000110011001010101011111
D1=1010101011001100111100011110
(2=1100001100110010101010111111
D2=010101011001100111106G£4411101
(3=0000110011001010102P11111111
D3=010101100110011110€011110101
(4=001100110010102€£101111111100
D4=0101100110013:10001111010101
¢5=1100110010101010111111110000
D5=01100116G3111000111101010101
(6=0011001410101011111111000011
D6=1001100111100011110101010101
C7=1200101010101111111100001100
D7={110011110001111010101010110

uuuuuuuuuu
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Sub key contd

* We now form the keys Kn, for 1<=n<=16, by applying the following permutation table to each

of the concatenated pairs CnDn. Each pair has 56 bits, but PC-2 only uses 48 of these

* Example: For the first key we have C1D1 = 1110000 1100110 0101649 1011111 1010101 0110011 0011110
0011110

* which, after we apply the permutation PC-2, becomes

* K1=000110110000001011101111111111 000111 CCC001 110010

(o] Pormmitest Chiles Twa (PC2)
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Sub key gherated

* For the other keys we have

* K2=011110011010 111011011001 110110 111100 100111 106201
K3 =010101 011111 110010 001010 010000 101100 11111021001
K4=011100101010 110111 010110110110 110011 0101C0-N11101
K5=011111 001110 110000 000111 111010 110101 001220101000
K6 =011000111010 010100 111110010100 000111 101100 101111
K7 =111011 001000 010010 110111111101 100001100010 111100
K8=111101 111000 101000 111010 110000 010022101111 111011
K9=111000 001101 101111 101011111011 022210 011110 000001
K10=101100011111 001101 000111 101110 100100 011001 001111
K11 =001000 010101 111111 010011 110411101101 001110 000110
K12 =011101 010111 000111 110101 120101 000110011111 101001
K13 =100101 111100 010111 010001221110 101011 101001 000001
K14 =010111 110100 0011101101+1 111100 101110011100 111010
K15=101111 111001 000110001101 001111 010011 111100 001010
K16 = 110010 110011 110110 001011 000011 100001 011111 110101



Step 2: Encode each 64-bit block of data
*M=0123456789ABCDEF

* M =0000 000100100011 01000101 01100111 1000 1001 101010111100 1101 1110111212

* There is an initial permutation IP of the 64 bits of the message Jdata M. This rearranges the bits according
to the following table

 Example: Applying the initial permutation to the block of text M, given previously, we get

* M =0000000100100011010001010110©111 10001001 101010111100 1101 1110

1111
IP=1100 1100 0000 0000 11001100 12111111111 0000 101010101111 00001010

1010

;) Inidtial Permmuiation ()
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Step 2 contd

Next divide the permuted block IP into a left half LO of 32 bits, and a right half RO of 32 bits.
Example: From IP, we get LO and RO

LO=1100 1100 0000 0000 11001100 11171 1111
RO=1111 0000 1010 1010 1111 0000 1010 1010

for 1<=n<=16, using a function f which operates on two blocks--a data block of 32
bits and a key Kn of 48 bits--to produce a biock of 32 bits. Let + denote XOR
addition, Then for n going from 1 to 16 we calculate

Ln= Rn'1
Rn= Ln'1 +f(Rn'1,Kn)

Example: Forn =1, we have

* K1=000110 110000 001011 101111 111111 000111 000001 110010
L1=R0O=11110000 1010 1010 1111 0000 1010 1010
R1 = LO + f(RO,K1)



Step 2 contd

* To calculate f, we first expand each block Rn-1 from 32 bits to 48 bits. This
is done by using a selection table

* Example: We calculate E(RO) from RO as follows:
e RO=1111 00001010 10101111 0000 101G1010

E(RO) =011110 100001 010101 0101C1 011110 100001 010101 010101

* Note that each block of 4 original kits has been expanded to a block of 6
output bits

() Expiunsion Perimuoatation (E)
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Step 2 contd

* Next in the f calculation, we XOR the output E(Rn-1)
with the key Kn:

* Kn + E(Rn-1).
 Example: For K1, E(RO), we have

* K1 - 000110 110000 001011 191111 111111 000111 000001 110010

E(RO) = 011110 100001 010102010101 011110 100001 010101 010101
K1+E(RO) =011000010001011220111010100001 100110010100 100111

* We have not yet finished calculating the function f . To this point we have
expanded Rn-1 from 32 bits to 48 bits, using the selection table, and XORed the

result with the key Kn . We now have 48 bits, or eight groups of six bits.



Step 2 contd

e with each group of six bits: we use them as addresses in tables called
"S boxes"

* Write the previous result, which is 4& bits, in the form:
* Kn + E(Rn-1) =B1B2B3B4B5B6B788,

* where each Bi is a group of six'bits. We now calculate
» S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8)



S-boxes

Example: consider the input
011001 to S-box S1E

The row is 011001:01(i.e. 1)B

The column is 011001: 1100 (i.e.
12)B)

The value in the selected cell is
9rI0Output is 1001

Example: For the first round, we oitain as
the output of the eight S boxes:

K1 + E(RO) = 011000 010001 011110
111010 100001 100110 010100 100111.

$1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(
B7)s8(B8)=0101 1100 1000 0010 1011

0101 1001 0111

S

Sg

Table 3.3 Definition of DES S-Boxes
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Step 2 contd

* The final stage in the calculation of fis to do a permutation ® ¢t the S-box output to obtain the final
value of f:

« f=P(S1(B1)S2(B2)...58(B8))

* Pyields a 32-bit output from a 32-bit input by perrauting the bits of the input block

* Example: From the output of the eight S bo:es:

* S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)s.7tB7)s8(B8) = 0101 1100 1000 0010 1011 0101 1001 0111
we get f=00100011 0100 1010 1610.1001 1011 1011

« R1=L0+f(RO,K1)
= 1100 1100 0000 0000 1100 110¢. 1111 1111
+0010 0011 0100 1010 1010 £601 1011 1011

=1110 1111 0100 1010 0110 0101 0100 0100

Colly Permaurtmaticoeas Faaasct@osas O
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Step 2 contd

 We then reverse the order of the t\wo blocks into the 64-
bit block R16L16

* and apply a final permutatioti IP-1 as defined by the
following table:

(a7 Toanwernsa: Fonidisal Frer-poyanlss fiasms (I-l_"'_l]
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Step 2 contd

 Example: If we process all 16 blocks using the metihod defined previously, we get,
on the 16th round,

* L16 =0100 0011 01000010 0011 001000110100
R16 = 000010100100 11001101 1001 10630101

* We reverse the order of these two blocks’'and apply the final permutation to

* R16L16 = 000010100100110011011901 10010101 01000011 01000010
00110010 00110100

* IP-1=1000010111101000 000210011 01010100 00001111 00001010 10110100
00000101

 which in hexadecimal format is
e 85E813540F0AB405.



Strength of DES

Two main concerns with DES: the length of th2 key and the nature of
the algorithm

* The key is rather short: 56 bits —
* In average, only half of the keys have to be tried to break the system
* |In principle it should take long tim= to break the system

* Things are quicker with dedicated hardware: 1998 —a special machine was
built for less than 250 000S breaking DES in less than 3 days, 2006 —estimates
are that a hardware costing around 20.000S may break DES within a day



Strength of DES

* Nature of the algorithm

* There has always been a concern about the design of DES. especially about the design of S-boxes
—perhaps they have been designed in such a way as to<asure a trapdoor to the algorithm —break
it without having to search for the key

* The design criteria for the S-boxes (and for the rest of the algorithm) have been classified
information and NSA was involved in the design

* Many regularities and unexpected behavior of the S-boxes have been reported
* On the other hand, changing the S-boxes slightly seems to weaken the algorithm
* No fatal weaknesses in the S-boxes hiave been (publicly) reported so far



Analysis of DES

* Avalanche effect: this is a desirable property of anv encryption algorithm

* A small change (even 1 bit) in the plaintext shouid produce a significant change in
the ciphertext

* Example: consider two blocks of 64 zeros.and in the second block rewrite 1 on the
first position. Encrypt them both with DES: depending on the key, the result may
have 34 different bits!

* A small change (even 1 bit) in the key should produce a significant change in the
ciphertext

 Example: a change of one kitin the DES key may produce 35 different bits in the
encryption of the same plaintext



Figure 30.16 Triple DES

64-bit plaintext

Triple DES

J

Encrypt DES Key,

Decrypt DES Key,

Encrypt DES Fj Key,

64-bit ciphertext

64-hiiplaintext

Triple DES

l

Decrypt DES Key,

Encrypt DES Key,

Decrypt DES Key,

]

64-bit ciphertext

a. Encryption Triple DES

b. Decryption Triple DES
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Table 30.1 AES configuration

Size of Data Block Number of Rounds — Key Size
0 > 128 bits

128 bits 120 192 bits

14 256 bits

30.95
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Figure 30.17 AES

128-bit plaintext

AES

Round 1 44,.“\—

O | K Round
Round 2 2 key -_ 128-bit key
generator

X Round 10
(slightly different) H_

128-bit ciphertext
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Figure 30.18 Structure of each round

128-bit data

Roundi__ o _iul
SubByte t

Byte substitution

ShiftRow l- N

1
1
1
1
1
1
1
1
1
1
Byte permutation |
1
1
1
1
1
1
1
1
1
1

MixColunrin ‘
Complex operation
(missing in round 10)

128-bit data
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Figure 30.19 Modes of operation for block ciphers

Operation

mode _j

A
a—

ECB

o |

CFB

OFB
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Figure 30.20 ECB mode

P, P,
N bitsl T N bits
) Encryption P:: Plaintext block i Decryption )
algorithm CI-Z Ciphertext block i algorithm
N bits
C.
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Figure 30.21 CBC mode

N bits
N bits
-=-=Cy

N bits Injtiated
with IV

Encryption
algorithm

P.: Plaintext block i
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IV: Initiclization vector

N bits

N bits

N bits
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Initiated N bits

with IV

Decryption
algorithm
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Figure 30.22 CFB mode

N-bit N-bit
shift register shift register
initially IV  bits initially IV  bits
I S R
N bits N bits
Y Y
K Encryptlon K Encryptlon
algorithm algorithm
N bits P.: Plaintext block i N bits
Y C;: Cinhertext block i Y
- V: Initialization vector C.
i-1 r
Actual key Actual key
bit bit bit
p r bits n r CI s r bits > P
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Figure 30.23 OFB mode

N-bit N-bit
shift register shift register
initially IV initially IV
- -, - -,
N bits | N bits |
Y | Y |
K Encryptlon : | K Encryptlon : |
algorithm 1 bits algorithm 't bits
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Y I Y I
1 |
r [ P.: Plaintext block i r [
o ____1 C:: Ciphertext block i o ___1
IV: Initialization vector
Actual key Actual key
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An asymmetric-key (or public-key) ciphgr uses two keys:
one private and one public. We disgﬁ& two algorithms:
RSA and Diffie-Hellman. Q\l‘

X

&
QO
N\

Q
Topics discussed in this“gé%‘tion:
RSA X
Diffie-Hellman QL
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Figure 30.24 RSA

To public
A A A
I | |
r__:____:____: ____________________ Calculating e, d, |
I and n
oy v
o) -
Alice S i e g q Bob
I [a B
Y
Plaintext Plaintext
prm >- prm
C=Pemodn J—‘ Ciphertext P=C®modn
Encryption Decryption
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Example 30.7
Bob chooses 7 and 11 as p and q and calculates
n=7-11=77 Thevalue of @ = (7 - 1) (11 — 1) or 60.
Now he chooses two keys, e and d. If#ze chooses e to be 13,

then d is 37. Now imagine Alice sends the plaintext 5 to
Bob. She uses the public key 13-%0 encrypt 5.

Plaintext: 5
C=55=26mod 77

Ciphertext: 26

30.107



% Example 30.7 (continued)

Bob receives the ciphertext 26 and uses the private key 37
to decipher the ciphertext:

Ciphertext: 26
P=26""=5mod77

Plaintext: 5

The plaintext 5 sent by Alice is received as plaintext 5 by
Bob.
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Example 30.8
Jennifer creates a pair of keys for herself. She chooses

p = 397 and q = 401. She calculates-n = 159,197 and
@D = 396 - 400 = 158,400. She then chooses e = 343 and

d = 12,007. Show how Ted can send a message to Jennifer if
he knows e and n.
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Example 30.8 (continuted)
di

Solution

Suppose Ted wants to send the message. “NO” to Jennifer.
He changes each character to a nuwmwber (from 00 to 25)
with each character coded as> two digits. He then
concatenates the two coded characters and gets a four-
digit number. The plaintext is 1314. Ted then uses e and n
to encrypt the message. The ciphertext is 1314°% = 33,677
mod 159,197. Jennifer receives the message 33,677 and
uses the decrypticn key d to decipher it as 33,67712007 =

1314 mod 159,197. Jennifer then decodes 1314 as the
message “NO”. Figure 30.25 shows the process.



Figure 30.25 Example 30.8

| =397 q = 401
Ted | n=159,197

| e=343 d=12,007
Te =343 id =12,007

1314 \ 33,677
4>| C=13143*3mod 159,197 Y——>| P =33,67712007 mod 159,197
|

Jennifer

n N Oll

I'INOI'I
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% Example 30.9

Let us give a realistic example. We randomly chose an
integer of 512 bits. The integer p is a 159-digit number.

( Q@ S

p =9613034531358350457419 1581280615427909305445594996215822583 150879647940
45505647063849125716018034750312098666606492420191808780667421096063354
219926661209

N

The integer q is a 160-digit number.

D

q= 1206019195723 14469 1827679420445089600155592505463703393606 179832 173 1432

14848376465921538945320917522527322683010712069560460251388714552496900
0359660045617
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% Example 30.9 (continued)

We calculate n. It has 309 digits.

n = 115935041739676149688925098646 15887523771457375454144775485526137614788
54083263508172768788159683251684688493006254857641112501624145523391829
271625076567727274600970827141277304349605060556347274566628060099924037

10299142447229221577279853172703383938122469268413732762200096667667183
1831088373420823444370953

We calculate @. It has 309 digits.

O = 11593504173967614968892509864615887523771457375454144775485526137614788
54083263508172768788159683251684688493006254857641112501624145523391829

27162507656751054233608492916752034482627988117554787657013923444405716
98958172819609822636107546721186461217135910735864061400888517026537727
7264467341066243857664128
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% Example 30.9 (continued)

We choose e = 35,535. We then find d.
e = 35535

d = 58008302860037763936093661289677917594669062052050962180422866111380593852

82235873170628691003002171085904433840217(7:2986908760061153062025249598844
480475682409662470814858 17130463240644(77704833134010850947385295645071936
77406119732655742423721761767462077637:04207600337085333288532 1447088595511
36670294831

Alice wants to send the message “THIS IS A TEST” which
can be changed to a wnwumeric value by using the 00-26
encoding scheme (26 1s the space character).

P = 190708182608 1826002619041819
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g Example 30.9 (continued)

The ciphertext calculated by Alice is C = P¢, which is.

C =47530912364622682720636555061054518094237 1'/97_3027049 17165232392430544529
6061319932856661784341835911415119741125200568297979457173603610127821
8847892741566090480023507190715277185914975188465888632101148354103361

6578984679683867637337657774656250752805211481418440481418443081277305
9004692874248559166462108656

Bob can recover the plaintext from the ciphertext by using
P = C9 which is

\ P = 1907081826081826062519041819 \

The recovered plaintext is THIS IS A TEST after decoding.
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Example 30.10

di
Let us give a trivial example to make the procedure clear.
Our example uses small numbers, but note that in a real
situation, the numbers are very large Assume g = 7 and
p = 23. The steps are as follows:
1. Alice chooses x = 3 and calciiiates R, = 7° mod 23 = 21.
2. Bob chooses y = 6 and caiculates R, = 7% mod 23 = 4.
3. Alice sends the number: 21 to Bob.
4. Bob sends the number 4 to Alice.
5. Alice calculates ine symmetric key K = 4° mod 23 = 18.
6. Bob calculates the symmetric key K = 21° mod 23 = 18.

The value of K is the same for both Alice and Bob,
gV modp = 7"%mod 23 = 18.



Figure 30.277 Diffie-Hellman idea

Alice fills up another
one-third of the
secret key using

her random number

Alice completes
the key by adding
the last part

She sends the He sends the
~_key.to Bob key to Alice

The two keys are the same
because it does not matter
if x is filled first ory.

Bob fills up another
one-third of the
secret key using
his random number

Bob completes
the key by adding
the last part
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Figure 30.28 Man-in-the-middle attack

p and g are public.

R, =g*mod p
R; >
R,=g rolp |
< R, 2 3
R, >
R; =g¥ mod p
< R,
. v, K; = (R;)2mod p e
Ki=(Ry)* mod p 5=(Ry)Y mod p
K, = (R;)2mod p
Alice-Eve key Eve-Bob key
K, =g**mod p K,= g% mod p
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