Chapter 2
 Cryptography

- By
- Prof. Muhammad Iqbar Bhat
- Government Degree College Beerwah

Cryptography

Cryptography is a branch of mathematics that deals with the transformation of data. Cryptographic algorithms are used in many was in information security and network security.
Cryptography is the practice and study of technigues for securing communication and data in the presence of adversaries.

Figure 30.1 Cryptography components

Figure 30.2 Categories of cryptography

Figure 30.3 Symmetric-key cryptography

Note

In symmetric-key cryptography, the saine key is used by the sender (for encr, かtion)
and the receiver (ior decryption).
The i $\epsilon \mathrm{e}$ is shared.

Figure 30.4 Asymmetric-key cryptography

Figure 30.5 Keys used in cryptography

Figure 30.6 Comparison between two categories of cryptography

b. Asymmetric-key cryptography

Symmetric-key cryptography started thousands of years ago when people needed to exchange secrets (for example, in a war). We still mainy use symmetric-key cryptography in our network sergurity.

Topics discussed in this section:

Traditional Ciphers
Simple Modern Ciphers
Modern Round Ciphers
Mode of Operation

Cryptography - some notations

- $Y=E_{k}(X)$ denotes that Y is the encryption of the plaintext X using the key K
- $X=D_{k}(Y)$ denotes that X is the decryption of the cipher text Y using the key K
$D_{k}\left(E_{k}(Y)\right)=Y$

Cryptanalysis and Brute-Force Attack

Cryptanalysis: Cryptanalytic attacks rely on the nature of the algorithm plus perhaps some knowledge of the general characteristics of the plaintext or even some sample plaintext-ciphertext pairs. This type of attack exploits the characteristics of the algorithm to attempt to deduce a specific plaintext or to deduce the key being used.

Brute-force attack: The attacker tries every possible key on a piece Díciphertext until an intelligible translation into plaintext is obtained. On average, half of all possible keys must be tried to achieve success.

Cryptanalyst Attacks

Table 3.1 Types of Attacks on Encrypted Messages

Type of Attack	Known to Cryptanalyst
Ciphertext Only	- Encryption algorithm
Known Plaintext	Encryption algorithm \square Ciphertext \square One or more plaintext-ciphertest pairs formed with the secret key
Chosen Plaintext	```- Encryption algorithm - Ciphertext ■ Plaintext message cherea by cryptanalyst, together with its corresponding ciphertext generated sith the secret key```
Chosen Ciphertext	```- Encryption algonthm - Ciphertext - Ciphertexi Ghosen by cryptanalyst, together with its corresponding decrypted plaintext generated with the secret key```
Chosen Text	```- Encryption algorithm - Ciphertext - Plaintext message chosen by cryptanalyst, together with its corresponding ciphertext generated with the secret key - Ciphertext chosen by cryptanalyst, together with its corresponding decrypted plaintext generated with the secret key```

Figure 30.7 Traditional ciphers

Substitution Ciphers

A substitution cipher replace:s one symbol with another:
A substitution techniçie is one in which the letters of plaintext are replaced by other letters or by numbers or symbols.
If the plaintext is viewed as a sequence of bits, then substitution involves replacing plaintext bit patterns with ciphertext bit patterns.

The following shows a plaintext and its corresponding ciphertext. Is the cipher monoalphabetic?

Plaintext: HELLO Ciphertext: KHOOR

Solution

The cipher is probably monoalphabetic because both occurrences of L's arre encrypted as O 's.

The following shows a plaintext and its corresponding ciphertext. Is the cipher monoalphabetis?

Plaintext: HELLO Ciphertext: ABNZF

Solution

The cipher is not monoalphabetic because each occurrence of L is encrypted by a different character. The first L is encrypted as N; the second as Z.

Note

The shift cipher is sometimes referred to as the Caesar cipher.

Use the shift cipher with key $=15$ to encrypt the message "HELLO."

Solution

We encrypt one charactere at a time. Each character is shifted 15 characters down. Letter H is encrypted to W. Letter E is encryptedio T. The first L is encrypted to A. The second L is also encrypted to A. And O is encrypted to D. The cipher text is WTAAD.

Use the shift cipher with key $=15$ to decrypt the message "WTAAD."

Solution

We decrypt one charactee at a time. Each character is shifted 15 characters un Letter W is decrypted to H. Letter T is decrypted to E^{5} The first A is decrypted to L. The second A is decrypted to L. And, finally, D is decrypted to O. The plaintext is HELLO.

FEY	PHHV	PH	DIWHU	WFCH	WFUTD	SDUWB
1	Ogg	og	chvgt	vjig	vqilc	retva
2	nffu	n土	bgufs	uif	uphb	qbsuz
3	meet	me	after	the	toga	party
4	ldds	1a	zescda	sgd	snfz	ozqsx
5	kecr	kce	ydrep	上王口	Imey	nyplw
6	jbbe	jb	xccabo	qeb	qles	mucogy
7	iamp	ia	wbpan	pila	pras	Iwnpu
8	hazo	inz	vaozm	bcz	cjov	kvinot
9	gry］	पY	uznyl	nily	silau	julns
10	Exom	Ex	tymuck	miza	minzt	itkmr
11	eww	ew	sxlwj	LZw	1 gYs	hsjlq
12	dvve	dv	工W＇，羽年	kyv	kExi	grikp
13	cum	cu	quath	jxul	jewq	正qinjo
14	btti	bt	F－＞iltg	iwt	idvp	epgin
15	assl	a：3	Othsf	hve	hcuo	dofhm
16	zrIS	zr	nsyre	gur	gbtn	cnegl
17	Y¢19	YCI	mur fqd	Itq	fasm	bmafk
18	3 arc	re	lqepe	esp	ezrl	alcej
19	vooc	wo	kpdob	dro	dycik	zkbli
20	vnine	vII	jocna	can	cxpj	yjach
21	umml	1 m	inlbmz	lopm	bwoi	xizbg
22	t11a	t．1	hmaly	aol	avnif	whyaf
23	skkz	sk	glzkox	zak	zumg	vgrze
24	rjJ	rj	－1kyjw	Ymi］	y ¢1f	ufwyd
25	qiliz	qII	ejxiv	x1i	xske	tevoce

Polyalphabetic substitution ciphers

- Well, one way is to use more than one alphabet, switching between them sisiematically. This type of cipher is called a polyalphabetic substitution cipher ("poly" is the Greek root for "many"). The difference, as you will see, is that frequency analysis no longer works the same way to break these
- Idea: use different monoalphabetic substitutions as one proceeds through the plaintext
- Makes cryptanalysis harder with morealphabets (substitutions) to guess and flattens frequency distribution
- A key determines which particular substitution is used in each step
- Gexample: the Vigenère ciphe

Vigenère

- Proposed by Giovan Batista Belaso(1553) and reinvented by ßiaisede Vigenère (1586), called "le chiffreindéchiffrable"for 300 years
- Effectively multiple Caesar ciphers
- Key is a word $\mathrm{K}=\mathrm{k} 1 \mathrm{k} 2$... kd
- Encryption
- Read one letter \mathbf{t} from the plaintext and one letter \mathbf{k} from the key
- \mathbf{t} is encrypted according to the Caesar ciphee with key \mathbf{k}
- When the key word is finished, start the reading of the key from the beginning
- Decryption works in reverse
- Example: key is "bcde"; "testing" is encrypted as "ugvxjpj"
- Note that the two ' t ' are encrypted by different letters: ' u ' and ' x '
- The two ' j ' in the crypto text come from different plain letters: ' i ' and ' g '

Table 2.3 The Modern Vigenère Tableau

	a	b	c	d	e	I	g	h	i	j	k	1	III	11	0	p	9	1	8	t	U	V	W	X	y	2
a	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z
b	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A
c	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	B
d	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C
e	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	v	V	X	Y	Z	A	B	C	D
f	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V		X	Y	Z	A	B	C	D	E
g	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	Y		Y	Z	A	B	C	D	E	F
h	H	1	J	K	L	M	N	0	P	Q	R	S	T	U	V	W		Y	Z	A	B	C	D	E	F	G
i	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H
j	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	V	Z	A	B	C	D	E	F	G	H	I
k	K	L	M	N	0	P	Q	R	S	T	U	V	W	X		Z	A	B	C	D	E	F	G	H	I	J
l	L	M	N	0	P	Q	R	S	T	U	V	W	X			A	B	C	D	E	F	G	H	I	J	K
m	M	N	0	P	Q	R	S	T	U	V	W	X	Y		A	B	C	D	E	F	G	H	I	J	K	L
n	N	0	P	Q	R	S	T	U	V	W	X	Y		A	B	C	D	E	F	G	H	I	J	K	L	M
0	0	P	Q	R	S	T	U	V	W	X	Y	Z		B	C	D	E	F	G	H	I	J	K	L	M	N
p	P	Q	R	S	T	U	V	W	X	Y	Z		B	C	D	E	F	G	H	I	J	K	L.	M	N	0
q	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P
r	R	S	T	U	V	W	X	Y	Z	A	(b)	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q
s	S	T	U	V	W	X	Y	Z	A	d	C	D	E	F	G	H	I	J	K	L.	M	N	0	P	Q	R
t	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S
μ	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T
v	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U
w	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V
x	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W
y	Y	Z	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X
2	Z	A	B	C	D	E	F	G	H	I	J	K	L.	M	N	0	P	Q	R	S	T	U	V	W	X	Y

Example Vigenère

Example

- • write the plaintext out
- - write the keyword repeated above it
- •use each key letter as a Caesar cipher key
- •encrypt the corresponding plaifiext letter
- •eg using keyword deceptive
- plain: wearediscoverecisaveyourself
- key: deceptivedeceptivedeceptive
- cipher: ZICVTWQNGRZGVTWAVZHCQYGLMGJ

Security of Vigenère Ciphers

- Its strength lays in the fact that each plaintext letter has multiple cipher text letters
- Letter frequencies are obscured (but not totaliy lost)
- Breaking Vigenère
- If we need to decide if the text was encrypted with a monoalphabetic cipher or with Vigenère:
- Start with letter frequencies
- See if it "looks" monoalribabetic or not: the frequencies should be those of letters in English texts
- If not, then it is Vigenère

One time pad

- The idea of the auto key system can be extendect to create an unbreakable system: one-time pad
- Idea: use a (truly) random key as long as the plaintext
- It is unbreakable since the cipher text bears no statistical relationship to the plaintext
- Moreover, for any plaintext \& any cipher text there exists a key mapping one to the other
- Thus, a cipher text can be aecrypted to any plaintext of the same length
- The cryptanalyst is in an impossible situation

One time pad example

- THE BRITISH ARE COMING
- DKJFOISJOGIJPAPDIGN
- Step 1-
- THEBRITISHARECOMING DKJFOISJOGIJPAPDIGN
- Step 2 - Determine an algorithm
- $A=0$
- $\mathrm{B}=1$
- $\mathrm{C}=2$
- $D=3$
- $\mathrm{E}=4$
- F=5
- It follows the formula "(plaintext + key) MOD alphabet length":

One time pad cont’d

- Step 3 - Perform the encryption
$(\mathrm{T}(19)+\mathrm{D}(03)=22) \mathrm{MOD} 26=22=\mathrm{W}$ $(H(07)+K(10)=17) M O D 26=17=R$ ($\mathrm{E}(04)+\mathrm{J}(09)=13)$ MOD $26=13=\mathrm{N}$ $(\mathrm{B}(01)+\mathrm{F}(05)=06) \mathrm{MOD} 26=06=\mathrm{G}$ $(R(17)+O(14)=31) M O D 26=05=F$ $(\mathrm{I}(08)+\mathrm{I}(08)=16) \mathrm{MOD} 26=16=\mathrm{Q}$ (T(19) $+\mathrm{S}(18)=37) \mathrm{MOD} 26=11=\mathrm{L}$ (I(08)+J(09)=17) MOD $26=17=R$ $(\mathrm{S}(18)+\mathrm{O}(14)=32) \mathrm{MOD} 26=06=\mathrm{G}$ $(\mathrm{H}(07)+\mathrm{G}(06)=13) \mathrm{MOD} 26=13=\mathrm{N}$ (A(00)+I(08)=08) MOD $26=08=1$ $(R(17)+J(09)=26)$ MOD $26=00=A$ $(\mathrm{E}(04)+\mathrm{P}(15)=19) \mathrm{MOD} 26=19=\mathrm{T}$ $(C(02)+A(00)=02) \mathrm{MOD} 26=02=C$ $(\mathrm{O}(14)+\mathrm{P}(15)=29) \mathrm{MOD} 26=03=\mathrm{D}$ ($\mathrm{M}(12)+\mathrm{D}(03)=15) \mathrm{MOD} 26=15=\mathrm{P}$ $(I(08)+I(08)=16)$ MOD $26=16=Q$ $(N(13)+G(06)=19) M O D 26=19=T$ $(\mathrm{G}(06)+\mathrm{N}(13)=19) \mathrm{MOD} 26=19=\mathrm{T}$

Pad cont'd

- We now show two different decryptions using two different keys:
- ciphertext: ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS
- key: pxImvmsydofuyrvzwc tnleobijecvgdupahfzzImnyih
- plaintext: mr mustard with the candlestick in the hall
- ciphertext: ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS
- key: mfugpmiydgaxqoufhklllmhsqdqogtewbqfgyovuhwt
- plaintext: miss scarlet with the knife in the library

Pad cont'd

- Two plausible plaintexts are produced.
- How is the cryptanalyst to decide whichis the correct decryption
- If the actual key were produced in a eruly random fashion, then the cryptanalyst cannot say that one of these two keys is more likely than the other.

Security of the one-time pad

- The security is entirely given by the randoniness of the key
- If the key is truly random, then the ciphertext is iandom
- A key can only be used onceif the cryptanalyst is to be kept in the "dark"
- Problems with this "perfect" cryptosystem
- Making large quantities of truly randencharacters is a significant task
- Key distribution is enormously difficult: for any message to be sent, a key of equal length must be available to both parties

Other technique of encryption: Transpositions

We have considered so far substitutions to hide the plaintext: each letter is mapped into a letter according to some substitution

- Different idea: perform some sort of permutation on the plaintext letters
- Hide the message by rearranging the letter order without altering the actual letters used
- The simplest such technique: rail fence technique

Note

A transposition cipher reorders (permutes) symbols in a block of symbols.

Figure 30.8 Transposition cipher

Encrypt the message "HELLO MY DEAR," using the key shown in Figure 30.8.

Solution

We first remove the spacesin the message. We then divide the text into blocks of four characters. We add a bogus character Z at the end of the third block. The result is HELL OMYD EARZ. We create a three-block ciphertext ELHLMDOYAZER.

Using Example 30.5, decrypt the message "ELHLMDOYAZER".

Solution

The result is HELL OMYDEARZ. After removing the bogus character and combining the characters, we get the original message " H 发LLO MY DEAR."

Rail Fence cipher

- Idea:write plaintext letters diagonally over a number of rows, then read off cipher row by row
- E.g., with a rail fence of depth 2 , to encrypethe text "meet me after the toga party", write message out as:

```
mem atrht g p ry
et efe t e o a a t
```

- Ciphertext is read from the above row-by-row:
- MEMATRHTGPRYETEFETEOAAT
- Attack: this is easily recognized because it has the same frequency distribution as the original text

Row transposition ciphers

- More complex scheme: row transposition
- Write letters of message out in rows overa specified number of columns?
- Reading the cryptotext column-by-olumn, with the columns permuted according to some key
- Example: "attack postponed until two am" with key 4312567:
- Key:
- Plaintext:

```
4己12567
attackp
ostpone
duntilt
woamxyz
```


Row transposition ciphers

- Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ

- If we number the letters in the plaintextfrom 1 to 28 , then the result of the first encryption is the following permutation of letters from plaintext:03101724041118250209162301081522051219 260613202707142128 ?
- Note the regularity of that sequence!
- Easily recognized!

Iterating the encryption makes it more secure

- Idea: use the same scheme once more to increase sefurity
- Key:
- Input:

```
4312567
TTNAAPT
mTSUOAC
D WCO:ब%
NLYPETZ
```

- Output: NSCYAUOPTTWLTMiDNAOIEPAXTTOKZ
- After the second transposition we get the following sequence of letters:
- 17090527241612071002222003251512042319141101262118080628
- This is far less structured and so, more difficult to cryptanalyze

Confusion vs Diffusion

Two Important Properties of Ciphers

- In 1949, Claude Shannon first proposed the ideas of confusion and diffusion in the operation of a cipher.

Diffusion means that if we change a single bit of the plaintext, then (statistically) half of the bits in the ciphertext should change, and similarly, if we change one bit of the ciphertext, then approximately one half of the plaintext bits should change.
e.g. P-box or transposition cipher

Confusion means that each binary digit (bit) of the ciphertext should depend on several parts of the key, obscuring the connections between the two. e.g. S-box or substitution cipher

Confusion vs Diffusion

Confusion	Diffusion
1. Confusion is the property of a cipher whereby it provides no clue regarding the relationship between the ciphertext and the key. 2. Confusion means that each binary digit (bit) of the ciphertext should depend on several parts of the key, obscuring the connections between the two. 3. This property makes it difficult to find the key from the ciphertext and if a single bit in a kev is changed, most or all the bits in the cipheriext will be affected. 4. Confusion increases the ambiruity of ciphertext, and it is used by beth block and stream cipher. 5. A Strong substitution (S-boxes) function enhances confusion	- Diffusion is concerned with the relationship between the plaintext and the corresponding cipher text. - Diffusion means that if we change a single bit of the pi'fintext, then half of the bits in the ciphertext shiould change, and similarly, if we change one bit df the ciphertext, then approximately one-half of the plaintext bits should change. - Since a bit can have only two states, when they are all re-evaluated and changed from one seemingly random position to another, half of the bits will have changed state. - A Strong transposition (P-boxes) enhances diffusion.

Cipher Techniques

Stream Ciphers

- Stream cipher is one that encrypts a digital diata stream one bit (or byte) at a time
- Example: auto keyed Vigenère cipher and the Vernam cipher

Block Ciphers

- Block cipher is one in which the plaintext is divided into blocks and one block is encrypted at one time producing a ciphertext of equal length
- Similar to substitution ciphers on very big giaracters: 64 bits or 128 bits are typical block lengths

Block Cipher Vs Stream Cipher

Bl	Stream Cipher
- Block Cipher Converts the plain text into cipher text by taking plain text's block at a time. - Block cipher uses either 64 bits or more than 64 bits. - Block cipher Uses confusion as well as diffusion. - In block cipher, reverse encripted text is hard. - The algorithm modes which are used in block cipher are: ECB (Electronic Code Book) and CBC (Cipher Block Chaining).	- Stream Cipher Converts the plaint text into cipher text by taking 1 byte of plain text at a time. - White stream cipher uses 8 bits. - While stream cipher uses only confusion. - While in stream cipher, reverse encrypted text is easy. - The algorithm modes which are used in - stream cipher are: CFB (Cipher Feedback) and OFB (Output Feedback).

Modern Symmetric-key ciphers

- Modern Block ciphers: A symmetric-key modern block cipher encrypts an n-bit block of plaintext or decrypts an n-bit block of ciphertext. The encryption or decryption algorithm uses a k-bit key. The decryption algorithm must be the inverse of the encryption algorithm, and both operations must use the same secret key so that Bob can retrieve the niessage sent by Alice.

Components of Modern Block Ciphers

S-Box

An S-box (substitution box) can be thought of as a miniature substitution cipher, but it substitutes bits. Unlike the traditional substitution cipher, an S-box can haye a different number of inputs and outputs.

S-Box

Ciphertext	Plaintext
0000	1110
0001	0011
0010	0100
0011	1000
0100	0001
0101	1100
0110	1010
0111	1111
1000	0111
1001	1101
1010	1001
1011	0110
1100	1011
1101	0010
1110	0000
1111	0101

P-Box

A P-box (permutation box) parallels the traditional transposition cipher for characters, butir ransposes bits

Exclusive-OR operation (XOR)

An important component in most block ciphers is the exclusive-OR operation, in which the output is 0 if the two inputs are thesame, and the output is 1 if the two inputs are different. In modern block ciphers, we use n exclusive-OR operations to combine an n-bit data piece with an n-bit key. An exclusive-OR operation is normally the only unit where the key is applied. The other components are normally based on predefined functions.

The Feistel Structure

The Feistel Cipher

- Feistel proposed [FEIS73] that we can approximate the ideal block cipher by utilizing the concept of a product cipher, which is the execution of two or more simple ciphers in sequence in such a way that the final result or product is cryptographically stronger than any of the component ciphers.
- This design model can have invertible, non-invertible, ©and self-invertible components. Additionally, the Feistel block cipher uses the same encryption and decryption algorithms.

Feistel Cipher Structure

- Block size: larger block sizes mean greater security
- Key Size: larger key size means greater security
- Number of rounds: multiple rounds offer increasing security
- Subkey generation algorithm: areater complexity will lead to greater difficulty of cryptanalysis.
- Fast software encryption/decryption: the speed of execution of the algorithm becomes a concern

Sub key

- Sub keys aie created from the original key by a kevexpansion algorithm designed for multipie-round ciphers called a key schedule. A popular method of combining a sub key with data is bitwise XOR. In each round, after the key mixing, the data is scrambled further using substitution and permutation functions.

DES
 (Data Encryption Standard)

DES

Adopted in 1977 by the National Bureau of Standards (US), nowadays NIST

Originates from an IBM projectrom late 1960s led by Feistel

DES

- Data Encryptio@Standard (DES)
- The most Widely used encryption scheme
- Theablgorithm is reffered to the Data Encryption Algorithm (DEA)
DES is a block cipher
- The plaintext is processed in 64-bit blocks
- The key is 56 -bits in length

DES

encryption

 schemeFigure 30.13 DES

Figure 30.13 DES

Figure 30.14 One round in DES ciphers

a. Encryption round

b. Decryption round

DES Function

DES function

Figure 2.4 Single Round of DES Algorithm

Sub key generation

Before round 1 of DES, they key is permuted aciording to a table labeled Permuted Choice One -the resulting 56-bit key is split into its two 28-bit halves labeled COand D0

In each round, $\mathrm{Ci}-1$ and $\mathrm{Di}-1$ are separately subjected to a circular left shift of one or two bits according to the tabie on the next slide - the shifted values will be input to next round

The shifted values serve as input to Permuted Choice Two which produces a 48-bit output: the sub key of the current round

M = 0123456789ABCDEF

- M = 00000001001000110100 010101190111100010011010 10111100110111101111

Example of DES

K = 133457799BBCDFF1

- K = 000100110011010001010111 011110011001101110111100 1101111111110001

Step 1: Create 16 sub keys, each of which is 48-bits long.

- In the general scheme of DES is shown that a 64-bit key is used -the bits of the key are numbered from 1 to 64.
- The algorithm ignores every $8,16,24,32,40,48,56$, and 64 bit -thus, the key for DES is effectively 56-bit long

± 7	49	41	33	25	17	9
1	58	50	42	34	29	18
10	2	± 9	± 1	45	B5	27
15	11	3	60	52	4.4	365
63	55	47	35	31	23	15
7	62		4它	38	30	22
14	4	$\therefore 1$	55	45	37	29
21	13	5	28	20	12	4

Example: From the original 64-bit key

Sub keys cont'd

- K = 00010011001101000101011101111001 1001101110111100 1101111111110001
- we get ine 56-bit permutation

K+ E 1111000011001100101010101111 0101010101100110011110001111

Next, split this key into left and right halves, CO and DO, where each half has 28 bits.

Example: From the permuted key $\mathrm{K}+$, we get $C O=1111000011001100101010101111$ $D O=0101010101100110011110001111$
$C 1=1110000110011001010101011111$
D1 $=1010101011001100111100011110$
$C 2=1100001100110010101010111111$
D2 $=0101010110011001111000111101$
$C 3=0000110011001010101011111111$
D3 $=0101011001100111100011110101$
$C 4=0011001100101016101111111100$
D4 $=0101100110011 / 10001111010101$
$C 5=1100110010101010111111110000$
D5 $=0110011031111000111101010101$
C6 $=0011001$ 110101011111111000011
$D 6=1001100111100011110101010101$
$C 7=1300101010101111111100001100$
$D 7=010011110001111010101010110$
\qquad
\qquad
(ci) Behoedulue sit Left Ehifis

Rammal mumbler	1	2	3	4	5	4	7	8	1	10	11	12	13	1.1	15	14
Eits rutaced	1	1	2	2	2	2	2	2	1	2	2	2	2	2	2	1

Sub key contd

- We now form the keys $K n$, for $1<=\boldsymbol{n}<=16$, by applying the following permutation table to each of the concatenated pairs CnDn. Each pair has 56 bits, but PC-2 only uses 48 of these
- Example: For the first key we have C1D1 = 1110000110011001010101011111101010101100110011110 0011110
- which, after we apply the permutation PC-2, becomes
- K1 = 000110110000001011101111111111000111 C00001 110010

(9) Demarn Chole Tw ($\mathrm{PO}, 2)$							
14	17	II	24	1	5	3	28
15	i	21	10	23	19	12	4
\%	8	16	7	47	3	13	2
41	52	31	37	47	55	30	40
31	4	3	48	44	4.	3	46
34	53	46	42	50	36	29	32

Sub key gnerated

- For the other keys we have
- K2 = 011110011010111011011001110110111100100111106151

K3 = 01010101111111001000101001000010110011111011001
$\boldsymbol{K 4}=011100101010110111010110110110110011010100$ D11101
$K 5=01111100111011000000011111101011010100110101000$
K6 = 011000111010010100111110010100000111101100101111
K7 = 111011001000010010110111111101100001100010111100
K8 = 111101111000101000111010110000010010101111111011
$K 9=111000001101101111101011111011011110011110000001$
$K 10=101100011111001101000111101110100100011001001111$
$K 11=00100001010111111101001111011^{\prime} 101101001110000110$
K12 = 0111010101110001111101011 100101 000110011111101001
$K 13=10010111110001011101000111110101011101001000001$
$K 14=01011111010000111011011111100101110011100111010$
$K 15=101111111001000110001101001111010011111100001010$
$K 16=110010110011110110001011000011100001011111110101$

Step 2: Encode each 64-bit block of data

- $\mathbf{M}=0123456789 A B C D E F$
- M = 0000000100100011010001010110011110001001101010111100110111101111
- There is an initial permutation IP of the 64 bits of the message dara \mathbf{M}. This rearranges the bits according to the following table
- Example: Applying the initial permutation to the block of text \mathbf{M}, given previously, we get
- M = 00000001001000110100010101100111000100110101011110011011110 1111
IP = 110011000000000011001100111111111111000010101010111100001010 1010

> (a) Initial Penmutation (LP)

58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
63	55	47	37	29	21	13	5

Step 2 contd

- Next divide the permuted block IP into a left half $\mathbf{L O}$ of $\mathbf{3 2}$ bits, and a right half $\boldsymbol{R} \mathbf{O}$ of $\mathbf{3 2}$ bits.
- Example: From IP, we get $\mathbf{L O}$ and $\boldsymbol{R O}$
- LO = 11001100000000001100110011111111 RO = 11110000101010101111000010101010
- for $1<=n<=16$, using a function f which operates on two blocks--a data block of 32 bits and a key \boldsymbol{K}_{n} of 48 bits--to produce atríck of 32 bits. Let + denote XOR addition, Then for \mathbf{n} going from 1 to 16 we calculate
- $L_{n}=R_{n}-1$
$R_{n}=L_{n}-1+f\left(R_{n}-1, K_{n}\right)$
- Example: For $\boldsymbol{n}=1$, we have
- K1 = 000110110000001011101111111111000111000001110010

$$
\text { L1 = RO = } 11110000101010101111000010101010
$$

$$
R 1=L 0+f(R 0, K 1)
$$

Step 2 contd

- To calculate \boldsymbol{f}, we first expand each block $\boldsymbol{R n} \mathbf{- 1}$ from 32 bits to 48 bits. This is done by using a selection table
- Example: We calculate $\mathbf{E}(\boldsymbol{R O})$ from $\boldsymbol{R O}$ as follows:
- RO = 11110000101010101111000010101010 $E(R O)=011110100001010101010101011110100001010101010101$
- Note that each block of 4 original bis has been expanded to a block of 6 output bits
(c) Expansion Permutation (E)

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

Step 2 contd

- Next in the f calculation, we XOR the output $\mathrm{E}(\boldsymbol{R n}-\mathbf{1})$ with the key Kn :
- Kn + E(Rn-1).
- Example: For $\boldsymbol{K 1}, \mathrm{E}(\mathrm{RO})$, we have
- K1 = 000110110000001011101111111111000111000001110010 $E(R O)=0111101000010101010010101011110100001010101010101$ $\operatorname{K1+E}(\boldsymbol{R O})=011000010001011110111010100001100110010100100111$
- We have not yet finished calculating the function f. To this point we have expanded Rn-1 from 32 bits to 48 bits, using the selection table, and XORed the result with the key $K \boldsymbol{n}$. We now have 48 bits, or eight groups of six bits.

Step 2 contd

- with each group of six bits: we use them asaddresses in tables called "S boxes"
- Write the previous result, which is 48 bits, in the form:
- Kn $+\mathrm{E}($ Rn-1 $)=$ B1B2B3B4B5B6B78\&,
- where each $B i$ is a group of six (its. We now calculate
- S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8)

S-boxes

- Example: consider the input 011001 to S-box S1?
- The row is 011001:01(i.e. 1)[
- The column is 011001: 1100 (i.e. 12)?

The value in the selected cell is 9?Output is 1001

- Example: For the first round, we ortain as the output of the eight \mathbf{S} boxes
- K1 $+\mathrm{E}(\mathbf{R O})=01100001000_{12} 011110$ 111010100001100110010100100111.
- S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8) = 01011100100000101011

010110010111

2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6
4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14
11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3

Step 2 contd

- The final stage in the calculation of f is to do a permutation 9 or the \mathbf{S}-box output to obtain the final value of f :
- $f=P(S 1$ (B1)S2(B2)...S8(B8))
- P yields a 32-bit output from a 32-bit input by perrouting the bits of the input block
- Example: From the output of the eight \mathbf{S} bowes
- S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S,기B7)S8(B8) = 01011100100000101011010110010111 we get $f=00100011010010101010,100110111011$
- R1 = LO + f(RO , K1)
= 11001100000000001100110011111111 + 00100011010010101010 -1C01 10111011
= 11101111010010100110010101000100
(d) Pernmutation Funcetion (P)

16	7	20	21	29	12	28	17
1	15	23	26	5	18	31	10
2	8	24	14	32	27	3	9
19	13	30	5	22	11	4	25

Step 2 contd

- We then reverse the order of the two blocks into the 64bit block R16L16
- and apply a final permutation IP-1 as defined by the following table:
(b) (raverse Initisal Pernautsation (IP-1)

40	S	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	45	17	57	25

Step 2 contd

- Example: If we process all 16 blocks using the method defined previously, we get, on the 16th round,
- L16 = 01000011010000100011001000110100 R16 = 000010100100110011011001 1061 0101
- We reverse the order of these two blocks and apply the final permutation to
- R16L16 = 000010100100110011011901100101010100001101000010 0011001000110100
- IP-1 = 10000101111010000001001101010100000011110000101010110100 00000101
- which in hexadecimal format is
- 85E813540F0AB405.

Strength of DES

Two main concerns with DES: the length of the key and the nature of the algorithm

- The key is rather short: 56 bits -
- In average, only half of the keys haveto be tried to break the system
- In principle it should take long time to break the system
- Things are quicker with dedicated hardware: 1998 -a special machine was built for less than 250000 \$breaking DES in less than 3 days, 2006 -estimates are that a hardware costing around $20.000 \$$ may break DES within a day

Strength of DES

- Nature of the algorithm
- There has always been a concern about the design of DES especially about the design of S-boxes -perhaps they have been designed in such a way as to easure a trapdoor to the algorithm -break it without having to search for the key
- The design criteria for the S-boxes (and for the rest of the algorithm) have been classified information and NSA was involved in the design
- Many regularities and unexpected behavior of the S-boxes have been reported
- On the other hand, changing the S-boxes slightly seems to weaken the algorithm
- No fatal weaknesses in the S-boxes Kive been (publicly) reported so far

Analysis of DES

- Avalanche effect: this is a desirable property of anyencryption algorithm
- A small change (even 1 bit) in the plaintext shou'd produce a significant change in the ciphertext
- Example: consider two blocks of 64 zeros and in the second block rewrite 1 on the first position. Encrypt them both with DES: depending on the key, the result may have 34 different bits!
- A small change (even 1 bit) in the key should produce a significant change in the ciphertext
- Example: a change of one bit in the DES key may produce 35 different bits in the encryption of the same plaintext

Figure 30.16 Triple DES

Table 30.1 AES configuration

Size of Data Block	Number of Rounds	Key Size
128 bits	10	128 bits
	12	192 bits
		256 bits

Note

AES has three different configurations with resr,ect to the number of rounds and key size.

Figure 30.17 AES

Figure 30.18 Structure of each round

Figure 30.19 Modes of operation for block ciphers

Figure 30.20 ECB mode

Figure 30.21 CBC mode

Figure 30.22 CFB mode

Figure 30.23 OFB mode

30-3 ASYMMETRIC-KEY CRYPTOGRAPHY

An asymmetric-key (or public-key) cipher uses two keys: one private and one public. We discuiss two algorithms: RSA and Diffie-Hellman.

Topics discussed in this section:

RSA
Diffie-Hellman

Figure 30.24 RSA

Note

In RSA, e and n are announced to the pishlic; d and Φ are kept secret.

Bob chooses 7 and 11 as p and q and calculates $n=7 \cdot 11=77$. The value of $\Phi=(7-1)(11-1)$ or 60 . Now he chooses two keys, e and d. Lhe chooses e to be 13, then d is 37. Now imagine Alice sends the plaintext 5 to Bob. She uses the public key 1320 encrypt 5.

Plaintext: 5
$C=5^{13}=26 \bmod 77$
Ciphertext: 26

Bob receives the ciphertext 26 and uses the private key 37 to decipher the ciphertext:

Ciphertext: 26

$P=26^{37}=5 \bmod 77$
Plaintext: 5

The plaintext 5 senty Alice is received as plaintext 5 by Bob.

Jennifer creates a pair of keys for herself. She chooses $p=397$ and $q=401$. She calculates $n=159,197$ and $\Phi=396 \cdot 400=158,400$. She then ehooses $e=343$ and $d=12,007$. Show how Ted can sendía message to Jennifer if he knows e and n.

Solution

Suppose Ted wants to send the message "NO" to Jennifer. He changes each character to a nuriber (from 00 to 25) with each character coded ass two digits. He then concatenates the two coded onaracters and gets a fourdigit number. The plaintext is 1314 . Ted then uses e and n to encrypt the message. The ciphertext is $1314^{343}=33,677$ mod 159,197. Jennifer receives the message 33,677 and uses the decryption key d to decipher it as 33,67712,007 $=$ 1314 mod 159,197. Jennifer then decodes 1314 as the message "NO". Figure 30.25 shows the process.

Figure 30.25 Example 30.8

Let us give a realistic example. We randomly chose an integer of 512 bits. The integer p is a 159-digit number.

```
p = 9613034531358350457419158128061542790930@S45594996215822583150879647940
    45505647063849125716018034750312098666606492420191808780667421096063354
    219926661209
```

The integer q is a 160-digit number.

```
q = 120601919572314469182/6794204450896001555925054637033936061798321731482
    14848376465921538945320917522527322683010712069560460251388714552496900
    0359660045617
```


We calculate n. It has 309 digits:

$$
\begin{aligned}
\mathbf{n}= & 11593504173967614968892509864615887523771457375454144775485526137614788 \\
& 54083263508172768788159683251684688493006254857641112501624145523391829 \\
& 2716250765677272746009708271412773043496050,556347274566628060099924037 \\
& 10299142447229221577279853172703383938133+59268413732762200096667667183 \\
& 1831088373420823444370953
\end{aligned}
$$

We calculate Φ. It has 30, 2 digits:

$$
\begin{aligned}
\phi= & 11593504173967614968892509864615887523771457375454144775485526137614788 \\
& 54083263508172768788159683251684688493006254857641112501624145523391829 \\
& 27162507656751054233608492916752034482627988117554787657013923444405716 \\
& 98958172819609822636107546721186461217135910735864061400888517026537727 \\
& 7264467341066243857664128
\end{aligned}
$$

We choose $e=35,535$. We then find d.

```
e=35535
d = 580083028600377639360936612896779175946690620.%650962180422866111380593852
    82235873170628691003002171085904433840217002986908760061153062025249598844
    4804756824096624708148581713046324064407%104833134010850947385295645071936
    77406119732655742423721761767462077637154207600337085333288532144708859551
    36670294831
```

Alice wants to send the message "THIS IS A TEST" which can be changed to a mumeric value by using the 00-26 encoding scheme (26.9 is the space character).

$$
\mathbf{P}=1907081826081826002619041819
$$

The ciphertext calculated by Alice is $C=P^{e}$, which is.

$$
\begin{aligned}
\mathbf{C =}= & 4753091236462268272063655506105451809423714950704917165232392430544529 \\
& 6061319932856661784341835911415119741125200568297979457173603610127821 \\
& 8847892741566090480023507190715277185914975188465888632101148354103361 \\
& 6578984679683867637337657774656250793805211481418440481418443081277305 \\
& 9004692874248559166462108656
\end{aligned}
$$

Bob can recover the plaintext from the ciphertext by using $P=C^{d}$, which is
$\mathbf{P}=1907081826081826002619041819$
The recovered plaintext is THIS IS A TEST after decoding.

Note

The symmetric (shares!) key in the
Diffie-Hellman piotocol is
$K=g^{\star v} \bmod p$.

Let us give a trivial example to make the procedure clear. Our example uses small numbers, but note that in a real situation, the numbers are very large 1 ssume $g=7$ and $p=23$. The steps are as follows:

1. Alice chooses $x=3$ and calcitates $R_{1}=7^{3} \bmod 23=21$.
2. Bob chooses $y=6$ and cafculates $R_{2}=7^{6} \bmod 23=4$.
3. Alice sends the number 21 to Bob.
4. Bob sends the number 4 to Alice.
5. Alice calculates the symmetric key $K=4^{3} \bmod 23=18$.
6. Bob calculates the symmetric key $K=21^{6} \bmod 23=18$.

The value of K is the same for both Alice and Bob; $g^{x y} \bmod p=7^{18} \bmod 23=18$.

Figure 30.27 Diffie-Hellman idea

Figure 30.28 Man-in-the-middle attack

