
Fundamentals 
of Programming
By
Prof Muhammad Iqbal Bhat
Government Degree College Beerwah



Topics

• Syntax and Semantics
• Source Code and Object Code:
• Datatypes
• Variables and Constants
• Declaration
• Structured Data Types
• Sequence Control
• Sequence Control between 

Statements



Syntax and 
Semantics



Syntax and 
Semantics
• Syntax and semantics are two 

fundamental concepts in 
programming languages. They define 
the structure and meaning of the 
language, respectively. Understanding 
the syntax and semantics of a 
programming language is essential for 
writing correct and efficient 
programs.



Sy
nt

ax

Syntax refers to the set of rules that govern the structure of a 
programming language

It defines the way in which programs are written and how the 
language is used.

A programming language syntax is typically defined by a set of 
grammar rules that dictate how different elements of the language 
can be combined to create valid statements.

Examples:

• Variable Declaration: Syntax: datatype variable_name; Example: int age;
• Function Declaration: Syntax: return_type function_name(parameter_list); Example: 

void print_message(char* message);
• Control Structure: Syntax: if (condition) { statement; } Example: if (age >= 18) { 

printf("You are an adult"); }



Se
m

an
tic

s:

Semantics refers to the meaning of the programming constructs in a 
language.

It defines the behavior of the language and the way in which programs are 
executed.

Semantics are closely related to syntax since they rely on the correct 
interpretation of the language's syntax.

Static vs Dynamic Semantics:

•Static semantics define the rules that govern the structure of a program before it is 
executed. They include rules for variable declarations, function definitions, and type 
checking. 

•Dynamic semantics define the behavior of the program as it is executed. They include rules 
for control flow, memory management, and error handling.

Examples;

•Variable Initialization: Syntax: datatype variable_name = value; Semantics: Assigns the 
value to the variable during declaration. Example: int age = 20;

•Function Call: Syntax: function_name(argument_list); Semantics: Executes the function 
with the specified arguments. Example: print_message("Hello World");



Source Code and Object Code:



So
ur

ce
 C

od
e:

• Source code is the human-readable version of a program
written in a high-level programming language.

• It is written using a text editor or an integrated
development environment (IDE).

• The source code contains the instructions and
algorithms that are used to create the program.

Source Code:

• Object code is the machine-readable version of a
program generated by a compiler.

• The object code is in the form of binary code that the
computer's CPU can understand and execute.

• The object code is generated by translating the source
code into machine code that can be executed directly by
the computer.

Object Code:



So
ur

ce
 C

od
e 

vs
 O

bj
ec

t 
Co

de
:

Source code is written in a high-level 
language, while object code is in machine 
code that the computer can directly execute.

Source code is written by humans, while 
object code is generated by a compiler or 
assembler.

Source code can be easily read and 
modified, while object code cannot be 
directly edited.



Source Code to Object Code Translation:



Da
ta

 T
yp

es
:

Datatypes define the type of data that can be stored 
and manipulated in a program.

Examples of datatypes include integers, floating-point 
numbers, characters, strings, and Boolean values.

Datatypes can be divided into two categories: 
primitive and composite.

Primitive datatypes are basic types, such as integers 
and characters, that cannot be further decomposed.

Composite datatypes are made up of multiple 
primitive datatypes, such as arrays and structures.



Data Types in C Language: 

Data Type Description Size (in bytes) Range

char Character data type 1 -128 to 127 or 0 to 255 (unsigned)

int Integer data type 2 or 4 -32,768 to 32,767 or -2,147,483,648 to 
2,147,483,647

short Short integer data type 2 -32,768 to 32,767

long Long integer data type 4 or 8
-2,147,483,648 to 2,147,483,647 or -
9,223,372,036,854,775,808 to 
9,223,372,036,854,775,807

float Floating-point data type 4 3.4E-38 to 3.4E+38

double Double-precision floating-point data type 8 1.7E-308 to 1.7E+308

long double Extended-precision floating-point data 
type 10 or 16 3.4E-4932 to 1.1E+4932

_Bool Boolean data type 1 0 to 1



Co
ns

ta
nt

s:
A constant is a named value that cannot be 
changed throughout the program.

Constants are declared using the keyword 
"const", followed by the data type and 
name.

Constants are useful for values that should 
not be changed, such as mathematical 
constants or physical constants.



Constants in C Language:

Constant Type Description Example

Integer Constants Integer values that cannot be changed during 
the program execution 42

Real Constants
Floating-point or double-precision values that 
cannot be changed during the program 
execution

3.14, 2.5e-3

Character Constants Single characters enclosed in single quotes 'a', '$'

String Constants A sequence of characters enclosed in double 
quotes "Hello, World!"

Enumeration Constants User-defined named values that represent a 
set of related integer constants

enum season { spring, summer, fall, 
winter };

Symbolic Constants
User-defined constants that are assigned a 
name, and are typically defined using the 
preprocessor directive #define

#define PI 3.14159



De
cl

ar
at

io
n

The declaration refers to the process of 
introducing a variable or constant into a 
program.

A variable or constant must be declared 
before it can be used in a program.

Declaration involves specifying the data 
type, name, and, optionally, an initial 
value for the variable or constant.



Declarations in C Language:

Declaration Type Description Syntax

Variable Declaration Declare a variable of a specific data type, with an 
optional initial value datatype variable_name = initial_value;

Function Declaration Declare a function with a return type, function name, 
and parameter list return_type function_name(parameter_list);

Array Declaration Declare an array with a specific data type, size, and 
optional initial values datatype array_name[size] = {initial_values};

Pointer Declaration Declare a pointer to a specific data type, with an 
optional initial value (address) datatype *pointer_name = &variable_name;

Structure Declaration Declare a structure with a specific name and 
member variables of different data types

struct structure_name { member_datatype1 
member_variable1; member_datatype2 
member_variable2; };

Union Declaration Declare a union with a specific name and member 
variables that share the same memory space

union union_name { member_datatype1 
member_variable1; member_datatype2 
member_variable2; };

Enumeration Declaration Declare an enumeration type with a specific name 
and named integer constants

enum enumeration_name { constant1, constant2, 
... };



Questions?


	Fundamentals of Programming
	Topics
	Syntax and Semantics
	Syntax and Semantics
	Syntax
	Semantics:
	Source Code and Object Code:
	Source Code:
	Source Code vs Object Code:
	Source Code to Object Code Translation:
	Data Types:
	Data Types in C Language: 
	Constants:
	Constants in C Language:
	Declaration
	Declarations in C Language:
	Questions?

