
Sequence Control 
and Subprograms
By
Prof Muhammad Iqbal Bhat
Government Degree College Beerwah



Topics

Sequence Control
Implicit and 

Explicit Sequence 
Control

Subprogram 
Control



In
tr

od
uc

tio
n:

Programming languages provide ways to control the order of execution of 
statements.

Sequence control determines the order in which statements are executed.

Subprogram control refers to how a program can call and return from 
subprograms or functions.



Sequence Control

Programming languages provide ways to control the order of execution of statements.

This is important because it allows us to write programs that solve complex problems by 
breaking them down into smaller, more manageable pieces.

Sequence control is the mechanism by which a programming language controls the order in 
which statements are executed in a program.

Types of Sequence Control:

• Implicit Sequence Control
• Explicit Sequence Control



Types of Sequence Control:

• Implicit sequence control is the default behavior of a programming language, where 
statements are executed in the order in which they appear in the program.

• Implicit sequence control relies on the order in which statements appear in the program.
• It is the default sequence and defined by the Language
• Examples: Expressions, Statements etc

Implicit Sequence Control:

• Explicit sequence control, on the other hand, is where the programmer explicitly specifies 
the order in which statements are executed using control structures.

• Implicit sequence control relies on the order set by the programmer in form of 
conditional and looping statements in the program.

• The most common types of control structures used for explicit sequence control are 
loops and conditionals.

Explicit Sequence Control:



Subprograms
Simple vs Recursive



Subprogram Control:
Subprograms are self-contained units of code that perform specific tasks and can be called by other parts of a program. They 
are commonly used in programming languages to break down complex problems into smaller, more manageable pieces.

Subprogram control refers to how a program can call and return from subprograms or functions.

Simple subprogram control involves calling a subprogram and returning to the calling program when the subprogram is 
finished. The subprogram is executed and then control is returned to the calling program.

In programming languages, simple subprogram control is typically accomplished using a call statement and a return 
statement. The call statement invokes the subprogram, and the return statement returns control to the calling program.

Understanding subprogram control is essential for developing effective programs that are modular, easy to understand, and 
easy to maintain.

Types of Subprograms:

• Simple Subprogram
• Recursive Subprogram



Simple Subprogram:

Simple subprogram control involves calling a subprogram and returning to the calling program when the 
subprogram is finished.

In other words, the subprogram is executed and then control is returned to the calling program.

Simple subprogram control is useful for breaking down complex problems into smaller subproblems that can 
be solved using the same algorithm. By encapsulating these subproblems in subprograms, we can write more 
efficient, easier to understand, and more maintainable code.

The code for the subprogram can be written once and then called multiple times from different parts of the 
program.



Simple Subprogram

return_type function_name(parameter_type parameter_name) 
{

// Code to perform the task
return result;

}

float area_of_circle(float radius) {
const float pi = 3.14159;
float area = pi * radius * radius;
return area;

}

Int main(){
/* Call subprogram
result = area_of_circle(10.1);

}



Recursive Subprogram:

Recursive subprogram control allows a subprogram to call itself.

This means that the subprogram can be executed repeatedly, with each call 
resulting in a new instance of the subprogram.

Recursive subprograms are useful for solving problems that can be broken down 
into smaller subproblems that can be solved using the same algorithm.

Recursive subprograms are also useful for solving problems that involve data 
structures such as trees, graphs, and linked lists.

A common example of a recursive subprogram is the calculation of the factorial of 
a number.



Recursive Subprogram

int main(){
/* Call subprogram
result = factorial(5)

}

int factorial(int n) {
if (n == 1) {

return 1;
} else {

return n * factorial(n-1);
}

}



Questions?


	Sequence Control and Subprograms
	Topics
	Introduction:
	Sequence Control
	Types of Sequence Control:
	Subprograms
	Subprogram Control:
	Simple Subprogram:
	Simple Subprogram
	Recursive Subprogram:
	Recursive Subprogram
	Questions?

