

# Public Key Cryptography and RSA 

## By

Prof. Mưhammad Iqbal Bhat
GDC Beerwah

## Some unanswered questions on symmetric cryptosystems

- Key management: changing the secret key or establishing one is nontrivial
- Change the keys two users share (should be done reasonably often)
- Establish a secret key with somebody you do not know and cannot meet in person: (e.g., visiting secure websites such as e-shops)
- This could be done via a trusted Key Distribution Center (details in a future lecture)
- Can (or should) we really trust the KDC?
- "What good would it do after all to develop impenetrable cryptosystems, if their users were forced to share their keys with a KDC that could be compromised by either burglary or subpoena?" -Diffie, 1988
- Digital signatures: one shouid make sure that a message came infact from the claimed sender


## A breakthrough idea

- Rather than having a secret key that the wo users must share, each users has two keys
- One key is secret and he is the only one who knows it
- The other key is public and anyone who wishes to send him a message uses that key to encrypt the message
- Diffie and Hellman first (publicly) introduced the idea in 1976 -this was radically different than all previous efforts
- NSA claims to have known it sine mid-1960s!
- Communications-Electronic Security Group (the British counterpart of NSA) documented the idea in a classified report in 1970


## A word of warning

- Public-key cryptography complements rather than replaces symmetric cryptography
- There is nothing in principle to make public-key crypto more secure than symmetric crypto
- Public-key crypto does not make symmetric crypto obsolete: it has its advantages but also its (major) drawbacks such as speed
- Due to its low speed, it is mostly confined to key management and digital signatures


## The idea of public-key cryptography

- The concept was proposed in 1976 by Diffieand Heliman although no practical way to design such a system was suggested
- Each user has two keys: one encryption key that he makes public and one decryption key that he keeps secret
- Clearly, it should be computationally infeasible to determine the decryption key given only the encryption key and the cryptographic algorithm
- Some algorithms (such as RSA) satisfy also the following useful characteristic:
- Either one of the two keys can be used for encryption -the other one should then be used to decrypt the message
- First we will investigate the concept with no reference yet to practical design of a public-key system


## Essential steps in public-key encryption

- Each user generates a pair of keys to be used for encryption and decryption
- Each user places one of the two keys in a public register and the other key is kept private
- If B wants to send a confidential message to A, B encrypts the message using A's public key
- When A receives the message, she decrypts it using her private key
- Nobody else can decrypt the message because that can only be done using A's private key
- Deducing a private key should be infeasible
- If a user wishes to change his keys - generate another pair of keys and publish the public one: no interaction with other users is needed


## Bob sends an encrypted message to Alice



## Some notation

- The public key of user $A$ will be denoted $K U_{A}$
- The private key of user A will be denoted $K_{A}$
- Encryption method will be a function E
- Decryption method will be a function D
- If $B$ wishes to send a plain message $X$ to $A$, then he sends the cryptotext $\mathrm{Y}=\mathrm{E}\left(\mathrm{KU}_{\mathrm{A}}, \mathrm{X}\right)$
- The intended receiver A will decrypt the message: $D(K R A, Y)=X$


## A first attack on the public-key scheme -authenticity

- Immediate attack on this scheme:
- An attacker may impersonate user $B$ : he sends a message $E\left(K U_{A}, X\right)$ and claims in the message to be $B-A$ has no guarantee this is so
- This was guaranteed in classical cryptosystems simply through knowing the key (only A and B are supposed to know the symmetric key)
- The authenticity of user $B$ can be established as follows:
- B will encrypt the message using his private key: $Y=E\left(K R_{B}, X\right)$
- This shows the authenticity of the sender because (supposedly) he is the only one who knows the private key
- The entire encrypted message serves as a digital signature
- Note: this may not be the best possible solution: ideally, digital signatures should be rather small so that one can preserve many of them over a long period of time
- Better schemes will be presented a couple of lectures on


## A scheme to authenticate the sender of the message


(b) Authentication


## Encryption and authenticity

- Still a drawback: the scheme on the previous slide authenticate but does not ensure security: anybody can decrypt the message using B's public key
- One can provide both authentication and confidentiality using the public-key scheme twice:
- B encrypts $X$ with his private key: $Y=E\left(K R_{B}, X\right)$
- B encrypts $Y$ with A's public key: $Z=E\left(K U_{A}, Y\right)$
- A will decrypt $Z$ (and she is the only one capable of doing it): $Y=D\left(K R_{A}, Z\right)$
- A can now get the plaintext and ensure that it comes from $B$ (he is the only one who knows his private key): decrypt $Y$ using B's public key: $X=E(K U B, Y)$


## Applications for public-key cryptosystems

1.Encryption/decryption: sender encrypts the message with the receiver's public key
2.Digital signature: sender "signs" the message (or a representative part of the message) using his private key
3. Key exchange: two sides cooperate to exchange a secret key for later use in a secret-key cryptosystem

## Requirements for public-key cryptosystems

- Generating a key pair (public key, private key) is computationally easy
- Encrypting a message using a known key (his own private or somebody else's public) is computationally easy
- Decrypting a message using a known key (his own private or somebody else's public) is computationally easy
- Knowing the public key, it is computationally infeasible for an opponent to deduce the private key
- Knowing the public key and a ciphertext, it is computationally infeasible for an opponent to deduce the private key
- Useful extra feature: encryption and decryption can be applied in any order:
- E(KUA, D(KRA, X) ) $=\mathrm{D}(\mathrm{KRA}, \mathrm{E}(\mathrm{KUA}, \mathrm{X})$


## RON RIVEST, ADI SHAMIR \& LEN ADLEMAN <br> 

- One of the first proposals on implementing the concept of public-key cryptography was that of Rivest, Shamir, Adleman-1977: RSA
- The RSA scheme is a block cipher in which the plaintext and the ciphertext are integers between 0 and $\mathrm{n}-1$ for some fixed n
- Typical size for n is 1024 bits (or 309 decimal digits)
- To be secure with today's technology size should between 1024 and 2048 bits
- Idea of RSA: it is a difficult math problem to factorize (large)integers
- Choose p and q odd primes, n=pq
- Choose integers d,e such that $\mathbf{M}^{\wedge}$ ed=M mod $n$, for all $M<n$
- Plaintext: block of $k$ bits, where $2 k<n \leqslant 2 k+1$-can be considered a number $M$ with $M<n$
- Encryption: $\mathrm{C}=\mathrm{M}^{\wedge} \mathrm{e} \bmod \mathrm{n}$
- Decryption: $C^{\wedge} d \bmod n=M^{\wedge} d e \bmod n=M$
- Public key: $K U=\{e, n\}$
- Private key:KR=\{d,n\}
- Question: How do we find d,e?
- Answer: Number Theory!


## RSA Background Mathematics

## Modulo Congruence $b \equiv c(\bmod m)$.

It refers to the relationship between two integers that have the same remainder when divided by a given positive integer, which is known as the modulus.
$66^{98}$
In other words, two integers a and b are said to be congruent modulo n , denoted as $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{n})$, if they have the same remainder when divided by n .

$$
\begin{gathered}
14 \equiv 2(\bmod 6) \\
25 \equiv 19(\bmod 3)
\end{gathered}
$$

Euler Totient Function $\phi(24)=8$

The Euler totient function, denoted as $\varphi(\mathrm{n})$, is an impoftant function in number theory.

It plays a critical role in the RSA algorithm, which is a widely-used public-key cryptosystem.

The Euler totient function is defined as the number of positive integers less than or equal to $n$ that are relatively prime to n.

It is denoted as $\varphi(\mathrm{n})$, where n is a positive integer.

For example, if $\mathrm{n}=10$, then $\varphi(10)=4$, because the only positive integers less than or equal to 10 that are relatively prime to 10 are $1,3,7$, and 9 .

## Euler Totient Function Properties

The Euler totient function has several important properties that make it useful in number theory and cryptography.

The first property is that $\varphi(n)$ is always even for $n \gg 2$.

The second property is that if $p$ is a primenumber, then $\varphi(p)=p-1$.

The third property is that if $p$ and $g$ are distinct prime numbers, then $\varphi(p q)=(p-1)(q-1)$.

The fourth property is that if n is a positive integer and a is a positive integer relatively prime to $n$, then $\varphi(a n)=\varphi(n) \times a^{\wedge}(k-1)$, where $k$ is the highest power of a that divides $n$

## Euler Totient Function

$$
\phi(24)=8
$$

- To calculate the Euler totient function, we need to find prime factors, this is the hardest part, for a big number it is very hard to find all of its prime factors, this is the security in RSA which is hard to factor a large number.
- Easy to see that for any two primes $\mathbf{p , q}, \varphi(p q)=(p-1)(q-1)$
- Euler's theorem: for any relatively prime integers a, n we have $\mathbf{a}^{\varphi(n)} \equiv 1 \bmod n$
- This theorem is a key component of the RSA algorithm, which uses modular exponentiation to encrypt and decrypt messages.


## Prime Factorization

399760339672075088299557194017994567848983719760280566510461694198205436599518040051609502918604597414419179645650 998925708942577701920324033371575390574186156167631547516696710042520586452798497447384811672279083833231162063897 143659010062936034531839664028520772113299916962527889285003765714831019968123230958171768533632424964448875962377 078042837494063139104883994762820590497060974377110730411808196584312443757015404013600816108244776781822715222280 487948885602891430551650343684833697508477347034068075581190428464004788029400785827187277658551697056720485143717 011331224562985166784945961020525526670307756664656683691096233395890399071292575368183955406298948459615017178976 589275589240697212677388363838696819778600947582732866303216309460317451170184747470967187230774940537917802928905 780901527837799407146052986645573549120932710534109085795989517987504933214154915043064847597748633594255240081708 044616224751379558415455307418881346824082708674251261376084842828103422282525194432486586473790101955453982199098 969325481320752971192060087421984226757415176637661276628865634427536174713218080266452709631427460305013127571386 648966579247634232317435989105989088161949040735570263443109044973232705707311002576576678066683072917328539925663 359737373307306613006695604852804908372900687534899618296547910551795990408196228661988812135959671312027358656432 208648655705813883934230357238160797349324322287397100734318061354951319796504264551931998473813724469978244667900 6857094084846747764429611563524533411145800040687260272920166093684984120202858303471568982546311184047115152560655 979581537132837581220281821041744241572142375094457837092090654952385531509535755916961007563743885420187608455761 720979654622842939408042375675576164796164270466163041533964224602964232818613284083747007563616277140254890531672 427918355509701575111655665528460924504606631314533835936660304462796162754132587480832546563640204763549008836692 113332281875801556192253737734859069239263227304774684564963747914203485939664199754026900386570369177890683431111 878984895776014203495411474180932505480291873347967036941169598535751087933696095266461130499714914324990135426188 107314102245762596998117708829043939108430744757884808328588684893719008668535005610995904449954416009020623666341 212979150966420910783836965379477622460062900392959714845992745236856069681738596300132408922794225624048358400945 23853941592466542312875122105855473259392197682657054698911591461443581

## 8192 bit Number

## Back to RSA

## Key Generation by Alice

Select $p, q$

$$
p \text { and } q \text { both prime, } p \neq q
$$

Calculate $n=p \times q$
Calculate $\phi(n)=(p-1)(q-1)$

Select integer $e$
Calculate $d$
Public key
Private key

$$
\begin{aligned}
& \operatorname{gcd}(\dot{\phi}(n), e)=1 ; 1<e<\phi(n) \\
& d \equiv e^{-1}(\bmod \phi(n)) \\
& P U=\{e, n\} \\
& P R=\{d, n\}
\end{aligned}
$$

## Encryption by Bob with Alice's Public Key

Plaintext:
$M<n$
Ciphertext:
$C=M^{e} \bmod n$

## Decryption by Alice with Alice's Private Key

Ciphertext:
Plaintext:
C
$M=C^{d} \bmod n$

## RSA algorithm



## RSA Algorithm

$$
\text { Encrypt } \quad \mathrm{m}^{\mathrm{e}} \bmod \mathrm{n}=\mathrm{c} \quad \varphi=(\mathrm{p}-\mathrm{I})(\mathrm{q}-\mathrm{I})
$$

## $x^{\varphi} \bmod n=(4)$

$$
e^{*} d \bmod \varphi \varphi=1
$$

Decrypt ${ }^{\text {d }} c^{d} \bmod n=m$ $\left(m^{e} \bmod n\right)^{d} \bmod n=m$

## Encrypt $\mathrm{m}^{e}$ mod̃ $\mathrm{n}=\mathrm{c}$

Decrypt $\quad c^{d} \bmod n=m$

$$
\begin{aligned}
& m=4 \widehat{4} \\
& p=61 \\
& \text { = } 3233, d=2753 \\
& \text { Encrypt }{ }^{2} 42^{17} \bmod 3233=c
\end{aligned}
$$

## Decrypt $2557^{2753} \bmod 3233=m$

## Example

- Key generation
- Select primes $p=17, q=11$
- Compute $n=p^{*} q=187$
- Compute $\varphi(\mathrm{n})=(\mathrm{p}-1)(\mathrm{q}-1)=160$
- Select e=7
- Compute d: d=23 (use the extended Euclid's algorithm)
- $\operatorname{Pr}_{\mathrm{k}}=\{7,187\}$
- $\mathrm{Pu}_{\mathrm{k}}=\{23,187\}$
- Encrypt M=88: 887mod 187
- $88^{7} \bmod 187=11$
- Decrypt C=11: $11^{23}$ mod 187
- $\mathrm{M}=11^{23} \bmod 187=88$


## Attacking RSA

- Brute force attacks: try all possible private keys
- As in the other cases defend using large keys: nowadays integers between 1024 and 2048 bits


## - Mathematical attacks

- Factor n into its two primes $\mathrm{p}, \mathrm{q}$ : this is a hard problem for large n
- Challenges by RSA Labs to factorize large integers
- Smallest unsolved challenge: 704 bits
- Determine $\varphi(\mathbf{n})$ directly without first determining p,q: this math problem is equivalent to factoring
- Determine directly, without first determining $\varphi(\mathbf{n})$ : this is believed to be at least as difficult as factoring
- Suggestions for design
- The larger the keys, the better but also the slower the algorithm
- Choosing p,q badly may weaken the algorithm
- p,q should differ in length by only a few bits: for a 1024-bit key, p,q should be on the order of magnitude 1075to 10100
- p-1 and $q-1$ should both contain a large prime factor
$-\operatorname{gcd}(p-1, q-1)$ should be small
- hd should be larger than n1/4RSA

