Relational Algebra

π σ ρ

By Prof. Muhammad Iqbal Bhat

Government Degree College Beerwah

Outline

- Relational Algebra
 - Unary Relational Operations
 - Relational Algebra Operations From Set Theory
 - Binary Relational Operations
 - Additional Relational Operations
 - Examples of Queries in Relational Algebra
- Example Database Application (COMPANY)

Relational Algebra Overview

Relational algebra is the basic set of operations for the relational model

These operations enable a user to specify **basic retrieval requests** (or **queries**)

The result of an operation is a *new relation*, which may have been formed from one or more *input* relations

This property makes the algebra "closed" (all objects in relational algebra are relations)

Relational Algebra Overview (continued)

The **algebra operations** thus produce new relations

These can be further manipulated using operations of the same algebra

A sequence of relational algebra operations forms a **relational algebra expression**

The result of a relational algebra expression is also a relation that represents the result of a database query (or retrieval request)

Relational Algebra Overview

- Relational Algebra consists of several groups of operations
 - Unary Relational Operations
 - SELECT (symbol: σ (sigma))
 - PROJECT (symbol: π (pi))
 - RENAME (symbol: ρ (rho))
 - Relational Algebra Operations From Set Theory
 - UNION (U), INTERSECTION (), DIFFERENCE (or MINUS,)
 - CARTESIAN PRODUCT (x)
 - Binary Relational Operations
 - JOIN (several variations of JOIN exist)
 - DIVISION
 - Additional Relational Operations
 - OUTER JOINS, OUTER UNION
 - AGGREGATE FUNCTIONS (These compute summary of information: for example, SUM, COUNT, AVG, MIN, MAX)

Database State for COMPANY

All examples discussed below refer to the COMPANY database shown here.

Figure 5.7

Referential integrity constraints displayed on the COMPANY relational database schema.

EMPLOYEE

Fname	Minit	Lname	<u>Ssn</u>	Bdate	Address	Sex	Salary	Super_ssn	Dno
			1112						
DEPARTM	IENT								
Dname	Dnumb	ber Mgr	_ssn I	//gr_start_	date				
		0							
DEPT_LO		S I							
	r <u>Dloc</u>	cation							
PROJECT	•								
Pname	Pnumb	per Ploc	ation	Dnum					
	A								
WORKS_C	ол 🗌								
Essn	Pno	Hours							
DEPENDE	ENT								
Essn	Depend	ent_name	Sex	Bdate	Relations	ship			
L									

Unary Relational Operations: SELECT

- The SELECT operation (denoted by σ (sigma)) is used to select a *subset* of the tuples from a relation based on a selection condition.
 - The selection condition acts as a filter
 - Keeps only those tuples that satisfy the qualifying condition
 - Tuples satisfying the condition are selected whereas the other tuples are discarded (*filtered out*)
- Examples:
 - Select the EMPLOYEE tuples whose department number is 4:

σ_{DNO = 4} (EMPLOYEE)

Select the employee tuples whose salary is greater than \$30,000:

σ_{SALARY > 30,000} (EMPLOYEE)

Unary Relational Operations: SELECT

In general, the select operation is denoted by

 $\sigma_{<selection condition>}(R)$ where

- the symbol σ (sigma) is used to denote the *select* operator
- the selection condition is a Boolean (conditional) expression specified on the attributes of relation R
- tuples that make the condition true are selected
 - appear in the result of the operation
- tuples that make the condition false are filtered out
 - discarded from the result of the operation

Unary Relational Operations: SELECT (continued)

SELECT Operation Properties

- The SELECT operation $\sigma_{<\!\!\text{selection condition>}}(R)$ produces a relation S that has the same schema (same attributes) as R
- SELECT σ is commutative:
 - $\sigma_{\text{condition1>}}(\sigma_{\text{condition2>}}(R)) = \sigma_{\text{condition2>}}(\sigma_{\text{condition1>}}(R))$
- Because of commutativity property, a cascade (sequence) of SELECT operations may be applied in any order:
 - $\sigma_{\text{cond1>}}(\sigma_{\text{cond2>}}(\sigma_{\text{cond3>}}(R)) = \sigma_{\text{cond2>}}(\sigma_{\text{cond3>}}(\sigma_{\text{cond1>}}(R)))$
- A cascade of SELECT operations may be replaced by a single selection with a conjunction of all the conditions:
 - $\sigma_{\text{cond1}}(\sigma_{\text{cond2}}(\sigma_{\text{cond3}}(R)) = \sigma_{\text{cond1}} \text{AND} (\sigma_{\text{cond2}}(R)))$
- The number of tuples in the result of a SELECT is less than (or equal to) the number of tuples in the input relation R

The following query results refer to this database state

Figure 5.6

One possible database state for the COMPANY relational database schema

EMPLOYE	E								
Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	м	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	К	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	M	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	E	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

DEPARTMENT

55 1988-05-22
21 1995-01-01
55 1981-06-19
1

DEPT_LOCAT	DEPT_LOCATIONS				
Dnumber	Dlocation				
1	Houston				
4	Stafford				
5	Bellaire				
5	Sugarland				
5	Houston				

WORKS ON

Essn	Pno	Hours	N + /
123456789	1	32.5	2
123456789	2	7.5	
666884444	3	40.0	
453453453	1	20.0	
453453453	2	20.0	
333445555	2	10.0	
333445555	3	10.0	
333445555	10	10.0	DEPE
333445555	20	10.0	
999887777	30	30.0	333
999887777	10	10.0	333
987987987	10	35.0	333
987987987	30	5.0	987
987654321	30	20.0	123
987654321	20	15.0	123
	-		

PROJECT			
Pname	Pnumber	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

ENDENT

333445555	20	10.0	Essn	Dependent_name	Sex	Bdate	Relationship
999887777	30	30.0	333445555	Alice	F	1986-04-05	Daughter
999887777	10	10.0	333445555	Theodore	М	1983-10-25	Son
987987987	10	35.0	333445555	Joy	F	1958-05-03	Spouse
987987987	30	5.0	987654321	Abner	М	1942-02-28	Spouse
987654321	30	20.0	123456789	Michael	М	1988-01-04	Son
987654321	20	15.0	123456789	Alice	F	1988-12-30	Daughter
888665555	20	NULL	123456789	Elizabeth	F	1967-05-05	Spouse

Unary Relational Operations: PROJECT

- PROJECT Operation is denoted by π (pi)
- This operation keeps certain columns (attributes) from a relation and discards the other columns.
 - PROJECT creates a vertical partitioning
 - The list of specified columns (attributes) is kept in each tuple
 - The other attributes in each tuple are discarded
- Example: To list each employee's first and last name and salary, the following is used:

 $\pi_{\text{LNAME, FNAME, SALARY}}$ (EMPLOYEE)

Unary Relational Operations: PROJECT (cont.)

- The general form of the *project* operation is:
 - π (pi) is the symbol used to represent the *project* operation
 - <attribute list> is the desired list of attributes from relation R.
- The project operation *removes any duplicate tuples*
 - This is because the result of the project operation must be a set of tuples

 $\pi_{<\text{attribute list>}}(\mathbb{R})$

Mathematical sets do not allow duplicate elements.

Unary Relational Operations: PROJECT (contd.)

PROJECT Operation Properties

- The number of tuples in the result of projection π_{<list>}(R) is always less or equal to the number of tuples in R
 - If the list of attributes includes a key of R, then the number of tuples in the result of PROJECT is equal to the number of tuples in R

PROJECT is not commutative

π π (π <list2> (R)) = π <list1> (R) as long as <list2> contains the attributes in <list1>

Examples of applying SELECT and PROJECT operations

Figure 8.1 Results of SELECT and PROJECT operations. (a) $\sigma_{(Dro=4 \text{ AND Selery>25000})} \propto (Dro=3 \text{ AND Selery>30000})$ (EMPLOYEE). (b) $\pi_{Lnarma \ Frame \ Selery}$ (EMPLOYEE). (c) $\pi_{Sex,\ Selery}$ (EMPLOYEE).

1	name	Minit	Lname	Sen	Bdate	Address	Sex	Salary	Super_san	Dno
F	iranklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	M	40000	888665555	5
J	ennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
F	tamesh	К	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	M	38000	333445555	5

(b)

(a)

Lname	Fname	Salary
Smith	John	30000
Wong	Franklin	40000
Zelaya	Alicia	25000
Wallace	Jennifer	43000
Narayan	Ramesh	38000
English	Joyce	25000
Jabbar	Ahmad	25000
Borg	James	55000

c)		0
Sex	Salary	
M	30000	
M	40000	
F	25000	
F	43000	
М	38000	
М	25000	
М	55000	

Relational Algebra Expressions

- We may want to apply several relational algebra operations one after the other
 - Either we can write the operations as a single relational algebra expression by nesting the operations, or
 - We can apply one operation at a time and create intermediate result relations.
- In the latter case, we must give names to the relations that hold the intermediate results.

Single expression versus sequence of relational operations (Example)

- To retrieve the first name, last name, and salary of all employees who work in department number 5, we must apply a select and a project operation
- We can write a *single relational algebra expression* as follows:
 - $\pi_{\text{FNAME, LNAME, SALARY}}(\sigma_{\text{DNO}=5}(\text{EMPLOYEE}))$
- OR We can explicitly show the sequence of operations, giving a name to each intermediate relation:
 - DEP5_EMPS $\leftarrow \sigma_{\text{DNO}=5}(\text{EMPLOYEE})$
 - RESULT $\leftarrow \pi_{\text{FNAME, LNAME, SALARY}}$ (DEP5_EMPS)

Unary Relational Operations: RENAME

- The RENAME operator is denoted by ρ (rho)
- In some cases, we may want to rename the attributes of a relation or the relation name or both
 - Useful when a query requires multiple operations
 - Necessary in some cases (see JOIN operation later)

Unary Relational Operations: RENAME (continued)

- The general RENAME operation ρ can be expressed by any of the following forms:
 - ρ_{S (B1, B2, ..., Bn)}(R) changes both:
 - the relation name to S, and
 - the column (attribute) names to B1, B1,Bn
 - ρ_S(R) changes:
 - the relation name only to S
 - ρ_(B1, B2, ..., Bn)(R) changes:
 - the column (attribute) names only to B1, B1,Bn

Unary Relational Operations: RENAME (continued)

- For convenience, we also use a shorthand for renaming attributes in an intermediate relation:
 - If we write:
 - RESULT $\leftarrow \pi_{\text{FNAME, LNAME, SALARY}}$ (DEP5_EMPS)
 - RESULT will have the same attribute names as DEP5_EMPS (same attributes as EMPLOYEE)
 - If we write:
 - RESULT (F, M, L, S, B, A, SX, SAL, SU, DNO) $\leftarrow \rho_{\text{RESULT}}$ (F.M.L.S.B,A,SX,SAL,SU, DNO) (DEP5_EMPS)
 - The 10 attributes of DEP5_EMPS are renamed to F, M, L, S, B, A, SX, SAL, SU, DNO, respectively

Note: the ← symbol is an assignment operator

Example of applying multiple operations and RENAME

Figure 8.2 Results of a sequence of operations. (a) x_{Pnerms Learns Salery} (a_{Dno=3}(EMPLOYEE)). (b) Using intermediate relations and renaming of attributes.

(a)

Fname	Lname	Salary
John	Smith	30000
Franklin	Wong	40000
Ramesh	Narayan	38000
Joyce	English	25000

(b) TEMP

Fname	Minit	Lname	San	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston,TX	M	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston,TX	M	40000	888665555	5
Ramesh	K	Narayan	666884444	1982-09-15	975 Fire Oak, Humble,TX	M	38000	333445555	5
Joyce	A	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5

Bhatuk

R

First_name	Last_name	Salary
John	Smith	30000
Franklin	Wong	40000
Ramesh	Narayan	38000
Joyce	English	25000

ALWAY'S LEARNING Fundamentals for Database Systems, 7e Ramez Elmasri | Shamkant B. Navanthe

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Relational Algebra Operations from Set Theory: UNION

- UNION Operation
 - \blacksquare Binary operation, denoted by \cup
 - The result of $R \cup S$, is a relation that includes all tuples that are either in R or in S or in both R and S
 - Duplicate tuples are eliminated
 - The two operand relations R and S must be "type compatible" (or UNION compatible)
 - R and S must have same number of attributes
 - Each pair of corresponding attributes must be type compatible (have same or compatible domains)

Relational Algebra Operations from Set Theory: UNION

- Example:
 - To retrieve the social security numbers of all employees who either work in department 5 (RESULT1 below) or directly supervise an employee who works in department 5 (RESULT2 below)
 - We can use the UNION operation as follows:

 $\begin{array}{l} \mathsf{DEP5_EMPS} \leftarrow \sigma_{\mathsf{DNO=5}} \ (\mathsf{EMPLOYEE}) \\ \mathsf{RESULT1} \leftarrow \pi_{\mathsf{SSN}} (\mathsf{DEP5_EMPS}) \\ \mathsf{RESULT2} (\mathsf{SSN}) \leftarrow \pi_{\mathsf{SUPERSSN}} (\mathsf{DEP5_EMPS}) \\ \mathsf{RESULT} \leftarrow \mathsf{RESULT1} \cup \mathsf{RESULT2} \end{array}$

 The union operation produces the tuples that are in either RESULT1 or RESULT2 or both

Figure 8.3 Result of the UNION operation RESULT \leftarrow RESULT1 \cup RESULT2.

Relational Algebra Operations from Set Theory

- Type compatibility of operands is required for the binary set operation UNION \cup , (also for INTERSECTION \cap , and SET DIFFERENCE –, see next slides)
- R1(A1, A2, ..., An) and R2(B1, B2, ..., Bn) are type compatible if:
 - they have the same number of attributes, and
 - the domains of corresponding attributes are type compatible (i.e. dom(Ai)=dom(Bi) for i=1, 2, ..., n).
- The resulting relation for R1∪R2 (also for R1∩R2, or R1–R2, see next slides) has the same attribute names as the *first* operand relation R1 (by convention)

Relational Algebra Operations from Set Theory: INTERSECTION

- \blacksquare INTERSECTION is denoted by \cap
- The result of the operation R ∩ S, is a relation that includes all tuples that are in both R and S
 - The attribute names in the result will be the same as the attribute names in R
- The two operand relations R and S must be "type compatible"

Relational Algebra Operations from Set Theory: SET DIFFERENCE (cont.)

- SET DIFFERENCE (also called MINUS or EXCEPT) is denoted by –
- The result of R S, is a relation that includes all tuples that are in R but not in S
 - The attribute names in the result will be the same as the attribute names in R
- The two operand relations R and S must be "type compatible"

Example to illustrate the result of UNION, INTERSECT, and DIFFERENCE

Figure 8.4 The set operations UNION, INTERSECTION, and MINUS. (a) Two union-compatible relations. (b) STUDENT u INSTRUCTOR. (c) STUDENT ∩ INSTRUCTOR. (d) STUDENT – INSTRUCTOR. (e) INSTRUCTOR – STUDENT.

(a)	STUDENT		INSIN	UCTOR				
	Fn	Ln	Fnam	ie Lnam	10	(b)	Fn	Ln
	Susan	Yao	John	Smith	1		Susan	Yao
	Ramesh	Shah	Ricar	do Brow	me	X	Ramesh	Shah
	Johnny	Kohler	Susa	n Yao		0	Johnny	Kohler
	Barbara	Jones	Franc	sis Johns	son		Barbara	Jones
	Amy	Ford	Rame	esh Shah			Amy	Ford
	Jimmy	Wang			\mathbf{O}		Jimmy	Wang
	Ernest	Gilbert]				Ernest	Gilbert
			-					-
							John	Smith
							John Ricardo	Smith Browne
				Ŋ.,			John Ricardo Francis	Smith Browne Johnson
				Ŋ.			John Ricardo Francis	Smith Browne Johnson
(c)	Fn	Ln	(d)	Fn	Ln	(e)	John Ricardo Francis Fname	Smith Browne Johnson
(c)	Fn Susan	Ln Yao	(d)	Fn Johnny	Ln Kohler	(e)	John Ricardo Francis Fname John	Smith Browne Johnson Lname Smith
c)	Fn Susan Ramesh	Ln Yao Shah	(d)	Fn Johnny Barbara	Ln Kohler Jones	(e)	John Ricardo Francis Fname John Ricardo	Smith Browne Johnson Lname Smith Browne
(c)	Fn Susan Ramesh	Ln Yao Shah	(d)	Fn Johnny Barbara Amy	Ln Kohler Jones Ford	(e)	John Ricardo Francis Ename John Ricardo Francis	Smith Browne Johnson Lname Smith Browne Johnson
c)	Fn Susan Ramesh	Ln Yao Shah	(d)	Fn Johnny Barbara Amy Jimmy	Ln Kohler Jones Ford Wang	(e)	John Ricardo Francis Fname John Ricardo Francis	Smith Browne Johnson Lname Smith Browne Johnson

ALWAYS LEARNING Fundamentals for Database Systems, 7e Ramez Elmasri | Shamkant B. Navanthe Copyright © 2016, 2011, 2007 by Pearson Education, Inc. All Rights Reserved

Some properties of UNION, INTERSECT, and DIFFERENCE

- Notice that both union and intersection are *commutative* operations; that is
 - $R \cup S = S \cup R$, and $R \cap S = S \cap R$
- Both union and intersection can be treated as n-ary operations applicable to any number of relations as both are *associative* operations; that is
 - $\mathsf{R} \cup (\mathsf{S} \cup \mathsf{T}) = (\mathsf{R} \cup \mathsf{S}) \cup \mathsf{T}$
 - $(\mathsf{R} \cap \mathsf{S}) \cap \mathsf{T} = \mathsf{R} \cap (\mathsf{S} \cap \mathsf{T})$
- The minus operation is not commutative; that is, in general

• $R - S \neq S - R$

Relational Algebra Operations from Set Theory: CARTESIAN PRODUCT

- CARTESIAN (or CROSS) PRODUCT Operation
 - This operation is used to combine tuples from two relations in a combinatorial fashion.
 - Denoted by R(A1, A2, ..., An) x S(B1, B2, ..., Bm)
 - Result is a relation Q with degree n + m attributes:
 - Q(A1, A2, ..., An, B1, B2, ..., Bm), in that order.
 - The resulting relation state has one tuple for each combination of tuples—one from R and one from S.
 - Hence, if R has n_R tuples (denoted as |R| = n_R), and S has n_S tuples, then R x S will have n_R * n_S tuples.
 - The two operands do NOT have to be "type compatible"

Relational Algebra Operations from Set Theory: CARTESIAN PRODUCT (cont.)

- Generally, CROSS PRODUCT is not a meaningful operation
 - Can become meaningful when followed by other operations
- Example (not meaningful):
 - FEMALE_EMPS $\leftarrow \sigma_{\text{SEX='F'}}(\text{EMPLOYEE})$
 - EMPNAMES $\leftarrow \pi_{\text{FNAME, LNAME, SSN}}$ (FEMALE_EMPS)
 - EMP_DEPENDENTS ← EMPNAMES x DEPENDENT
- EMP_DEPENDENTS will contain every combination of EMPNAMES and DEPENDENT
 - whether or not they are actually related

Relational Algebra Operations from Set Theory: CARTESIAN PRODUCT (cont.)

- To keep only combinations where the DEPENDENT is related to the EMPLOYEE, we add a SELECT operation as follows
- Example (meaningful):
 - FEMALE_EMPS $\leftarrow \sigma_{SEX='F'}$ (EMPLOYEE)
 - EMPNAMES $\leftarrow \pi_{\text{FNAME, LNAME, SSN}}$ (FEMALE_EMPS)
 - EMP_DEPENDENTS ← EMPNAMES x DEPENDENT
 - ACTUAL_DEPS $\leftarrow \sigma_{\text{SSN}=\text{ESSN}}(\text{EMP}_\text{DEPENDENTS})$
 - RESULT $\leftarrow \pi_{\text{FNAME, LNAME, DEPENDENT_NAME}}$ (ACTUAL_DEPS)
- RESULT will now contain the name of female employees and their dependents

Binary Relational Operations: JOIN

- JOIN Operation (denoted by) ⊠
 - The sequence of CARTESIAN PRODECT followed by SELECT is used quite commonly to identify and select related tuples from two relations
 - A special operation, called JOIN combines this sequence into a single operation
 - This operation is very important for any relational database with more than a single relation, because it allows us *combine related tuples* from various relations
 - The general form of a join operation on two relations R(A1, A2, ..., An) and S(B1, B2, ..., Bm) is:
 - where R and S can be any relations that result from general relational algebra expressions.

Binary Relational Operations: JOIN (cont.)

- Example: Suppose that we want to retrieve the name of the manager of each department.
 - To get the manager's name, we need to combine each DEPARTMENT tuple with the EMPLOYEE tuple whose SSN value matches the MGRSSN value in the department tuple.
 - We do this by using the join is operation.
 - DEPT_MGR ← DEPARTMENT MGRSSN=SSN EMPLOYEE
- MGRSSN=SSN is the join condition
 - Combines each department record with the employee who manages the department
 - The join condition can also be specified as DEPARTMENT.MGRSSN= EMPLOYEE.SSN

Some properties of JOIN

- Consider the following JOIN operation:

 - Result is a relation Q with degree n + m attributes:

• Q(A1, A2, ..., An, B1, B2, ..., Bm), in that order.

- The resulting relation state has one tuple for each combination of tuples—r from R and s from S, but only if they satisfy the join condition r[Ai]=s[Bj]
- Hence, if R has n_R tuples, and S has n_S tuples, then the join result will generally have *less than* n_R * n_S tuples.
- Only related tuples (based on the join condition) will appear in the result

Some properties of JOIN

- The general case of JOIN operation is called a Theta-join:
 - R S theta
- The join condition is called theta
- Theta can be any general boolean expression on the attributes of R and S; for example:
 - R.Ai<S.Bj AND (R.Ak=S.BI OR R.Ap<S.Bq)</p>
- Most join conditions involve one or more equality conditions "AND"ed together; for example:
 - R.Ai=S.Bj AND R.Ak=S.BI AND R.Ap=S.Bq

Binary Relational Operations: EQUIJOIN

- EQUIJOIN Operation
- The most common use of join involves join conditions with equality comparisons only
- Such a join, where the only comparison operator used is =, is called an EQUIJOIN.
 - In the result of an EQUIJOIN we always have one or more pairs of attributes (whose names need not be identical) that have identical values in every tuple.
 - The JOIN seen in the previous example was an EQUIJOIN.

Binary Relational Operations: NATURAL JOIN Operation

- NATURAL JOIN Operation
 - Another variation of JOIN called NATURAL JOIN denoted by * was created to get rid of the second (superfluous) attribute in an EQUIJOIN condition.
 - because one of each pair of attributes with identical values is superfluous
 - The standard definition of natural join requires that the two join attributes, or each pair of corresponding join attributes, *have the same name* in both relations
 - If this is not the case, a renaming operation is applied first.

Binary Relational Operations NATURAL JOIN (continued)

- Example: To apply a natural join on the DNUMBER attributes of DEPARTMENT and DEPT_LOCATIONS, it is sufficient to write:
 DEPT_LOCS ← DEPARTMENT * DEPT_LOCATIONS
- Only attribute with the same name is DNUMBER
- An implicit join condition is created based on this attribute: DEPARTMENT.DNUMBER=DEPT_LOCATIONS.DNUMBER
- Another example: $Q \leftarrow R(A,B,C,D) * S(C,D,E)$
 - The implicit join condition includes each pair of attributes with the same name, "AND" ed together:
 - R.C=S.C AND R.D.S.D
 - Result keeps only one attribute of each such pair:
 - Q(A,B,C,D,E)

Complete Set of Relational Operations

- The set of operations including SELECT σ , PROJECT π , UNION \cup , DIFFERENCE – , RENAME ρ , and CARTESIAN PRODUCT X is called a *complete set* because any other relational algebra expression can be expressed by a combination of these five operations.
- For example:

 - R ∩ S = (R ∪ S) ((R S) ∪ (S R)) R $\bigotimes_{\text{(join condition)}} S = \sigma_{\text{(join condition)}} (R X S)$

Binary Relational Operations: DIVISION

- DIVISION Operation
 - The division operation is applied to two relations
 - R(Z) ÷ S(X), where X subset Z. Let Y = Z X (and hence Z = X ∪ Y); that is, let Y be the set of attributes of R that are not attributes of S.
 - The result of DIVISION is a relation T(X) that includes a tuple t if tuples t_R appear in R with t_R [Y] = t, and with
 - $t_R [X] = t_s$ for every tuple t_s in S.
 - For a tuple t to appear in the result T of the DIVISION, the values in t must appear in R in combination with *every* tuple in S.

Example of DIVISION

Figure 8.8 The DIVISION operation. (a) Dividing SSN_PNOS by SMITH_PNOS. (b) T $\leftarrow R \Rightarrow S$

(a)				(b)	.ΙΧ	
SSN_PNOS		SMITH_PNOS		R		S
Essn	Pno	Pno		A	в	A
123456789	1	1	(81	b1	a1
123456789	2	2		a2	b1	a2
666884444	з			a3	b1	a3
453453453	1			a4	b1	
453453453	2	SSNS		a1	b2	т
333445555	2	San		a3	b2	в
333445555	3	123456789	*	a2	b3	b1
3334455555	10	453453453		a3	b3	b4
333445555	20	×.		a4	b3	
999887777	30			a1	b4	
999887777	10			a2	b4	
987987987	10	Ť		a3	b4	
987987987	30					
987654321	30					
987654321	20					
888665555	20					

ALWAYS LEARNING Fundamentals for Detabase Systems, 7e Ramez Elmasri | Shamkant B. Navanthe

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Table 8.1Operations of Relational Algebra

Table 8.1 Operations of Relational Algebra					
OPERATION	PURPOSE	NOTATION			
SELECT	Selects all tuples that satisfy the selection condition from a relation <i>R</i> .	$\sigma_{< selection condition >}(R)$			
PROJECT	Produces a new relation with only some of the attributes of <i>R</i> , and removes duplicate tuples.	$\pi_{< ext{attribute list}>}(R)$			
THETA JOIN	Produces all combinations of tuples from R_1 and R_2 that satisfy the join condition.	$R_1 \bowtie_{<\text{join condition}>} R_2$			
EQUIJOIN	Produces all the combinations of tuples from R_1 and R_2 that satisfy a join condition with only equality comparisons.	$R_1 \bowtie_{<\text{join condition}>} R_2$, OR $R_1 \bowtie_{(<\text{join attributes 1>}),}$ $(<\text{join attributes 2>}) R_2$			
NATURAL JOIN	Same as EQUIJOIN except that the join attributes of R_2 are not included in the resulting relation; if the join attributes have the same names, they do not have to be specified at all.	$R_1^*_{<\text{join condition}>} R_2,$ OR $R_1^*_{(<\text{join attributes 1>}),$ (<join 2="" attributes="">) R_2 OR $R_1 * R_2$</join>			

continued on next slide

Table 8.1 Operations of Relational Algebra (continued)

Table 8.1Operations of	Relational Algebra	
OPERATION	PURPOSE	NOTATION
UNION	Produces a relation that includes all the tuples in R_1 or R_2 or both R_1 and R_2 ; R_1 and R_2 must be union compatible.	$R_1 \cup R_2$
INTERSECTION	Produces a relation that includes all the tuples in both R_1 and R_2 ; R_1 and R_2 must be union compatible.	$R_1 \cap R_2$
DIFFERENCE	Produces a relation that includes all the tuples in R_1 that are not in R_2 ; R_1 and R_2 must be union compatible.	$R_1 - R_2$
CARTESIAN PRODUCT	Produces a relation that has the attributes of R_1 and R_2 and includes as tuples all possible combinations of tuples from R_1 and R_2 .	$R_1 \times R_2$
DIVISION	Produces a relation $R(X)$ that includes all tuples $t[X]$ in $R_1(Z)$ that appear in R_1 in combination with every tuple from $R_2(Y)$, where $Z = X \cup Y$.	$R_1(Z) \div R_2(Y)$

Examples on Relational Algebra

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Figure 4.15 An Instance S3 of Sailors

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Figure 4.17 An Instance B1 of Boats

sid	bid	day
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
$\overline{74}$	103	9/8/98

Figure 4.16 An Instance R2 of Reserves

1. Select sname and age of sailors with rating > 6

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Figure 4.15 An Instance S3 of Sailors

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Figure 4.17 An Instance B1 of Boats

sid	bid	day
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

Figure 4.16 An Instance R2 of Reserves

 $\pi_{\text{sname, age}}(\sigma_{\text{rating} > 6}(\text{Sailors}))$

2. Select name of boats with red color

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Figure 4.15 An Instance S3 of Sailors

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Figure 4.17 An Instance B1 of Boats

sid	bid	day
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

Figure 4.16 An Instance R2 of Reserves

 $\pi_{\text{bname}}(\sigma_{\text{color}='\text{red'}}(\text{Boats}))$

3. Find the names of sailors who have reserved boat 103.

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Figure 4.15 An Instance S3 of Sailors

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Figure 4.17 An Instance *B*1 of Boats

sid	bid	day
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

Figure 4.16 An Instance R2 of Reserves

 $\pi_{sname}((\sigma_{bid=103} Reserves) \bowtie Sailors)$

3. Find the names of sailors who have reserved boat 103.

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Figure 4.15 An Instance S3 of Sailors

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Figure 4.17 An Instance *B*1 of Boats

sid	bid	day
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

Figure 4.16 An Instance R2 of Reserves

 $\pi_{sname}((\sigma_{bid=103} Reserves) \bowtie Sailors)$

4. Find the names of sailors who have reserved a red boat.

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Figure 4.15 An Instance S3 of Sailors

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Figure 4.17 An Instance B1 of Boats

sid	bid	day
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

Figure 4.16 An Instance R2 of Reserves

 $\pi_{sname}((\sigma_{color='red'}Boats) \bowtie Reserves \bowtie Sailors)$

5. Find the colors of boats reserved by Lubber

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Figure 4.15 An Instance S3 of Sailors

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Figure 4.17 An Instance B1 of Boats

sid	bid	day
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

Figure 4.16 An Instance R2 of Reserves

 $\pi_{color}((\sigma_{sname='Lubber'}Sailors) \bowtie Reserves \bowtie Boats)$

6. Find the names of sailors who have reserved at least one boat.

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Figure 4.15 An Instance S3 of Sailors

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Figure 4.17 An Instance B1 of Boats

sid	bid	day
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

Figure 4.16 An Instance R2 of Reserves

 $\pi_{sname}(Sailors \bowtie Reserves)$

7. Find the names of sailors who have reserved a red or a green boat

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Figure 4.15 An Instance S3 of Sailors

		K
bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Figure 4.17 An Instance B1 of Boats

sid	bid	day
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

Figure 4.16 An Instance R2 of Reserves

 $\rho(Tempboats, (\sigma_{color='red'}Boats) \cup (\sigma_{color='green'}Boats))$ $\pi_{sname}(Tempboats \bowtie Reserves \bowtie Sailors)$

8. Find the names of sailors who have reserved a red and a green boat.

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Figure 4.15 An Instance S3 of Sailors

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Figure 4.17 An Instance B1 of Boats

sid	bid	day
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

Figure 4.16 An Instance R2 of Reserves

 $\rho(Tempboats2, (\sigma_{color='red'}Boats) \cap (\sigma_{color='green'}Boats))$ $\pi_{sname}(Tempboats2 \bowtie Reserves \bowtie Sailors)$

9. Find the sids of sailors with age over 20 who have not reserved a red boat

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Figure 4.15 An Instance S3 of Sailors

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Figure 4.17 An Instance B1 of Boats

sid	bid	day
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

Figure 4.16 An Instance R2 of Reserves

 $\pi_{sid}(\sigma_{age>20}Sailors) \pi_{sid}((\sigma_{color='red'}Boats) \bowtie Reserves \bowtie Sailors)$

10. Find the names of sailors who have reserved all boats

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Figure 4.15 An Instance S3 of Sailors

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Figure 4.17 An Instance B1 of Boats

sid	bid	day
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

Figure 4.16 An Instance R2 of Reserves

 $\rho(Tempsids, (\pi_{sid,bid}Reserves)/(\pi_{bid}Boats))$ $\pi_{sname}(Tempsids \bowtie Sailors)$

11. Find the names of sailors who have reserved all boats called Interlake

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Figure 4.15 An Instance S3 of Sailors

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Figure 4.17 An Instance B1 of Boats

sid	bid	day
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

Figure 4.16 An Instance R2 of Reserves

 $\rho(Tempsids, (\pi_{sid,bid}Reserves)/(\pi_{bid}(\sigma_{bname='Interlake'}Boats)))$ $\pi_{sname}(Tempsids \bowtie Sailors)$

Assignment 1:

Suppliers(sid: integer, sname: string, address: string)
Parts(pid: integer, pname: string, color: string)
Catalog(sid: integer, pid: integer, cost: real)

- 1. Find the names of suppliers who supply some red part.
- 2. Find the sids of suppliers who supply some red or green part.
- 3. Find the sids of suppliers who supply some red part or are at 221 Packer Ave.
- 4. Find the sids of suppliers who supply some red part and some green part.
- 5. Find the sids of suppliers who supply every part.
- 6. Find the sids of suppliers who supply every red part.
- 7. Find the sids of suppliers who supply every red or green part.
- 8. Find the sids of suppliers who supply every red part or supply every green part.

Assignment 1:

Suppliers(sid: integer, sname: string, address: string)
Parts(pid: integer, pname: string, color: string)
Catalog(sid: integer, pid: integer, cost: real)

State what following queries compute:

- 1. $\pi_{sname}(\pi_{sid}(\sigma_{color='red'}Parts) \bowtie (\sigma_{cost<100}Catalog) \bowtie Suppliers)$
- 2. $\pi_{sname}(\pi_{sid}((\sigma_{color='red'}Parts) \bowtie (\sigma_{cost} \bigcirc catalog) \bowtie Suppliers)))$
- 3. $(\pi_{sname}((\sigma_{color='red'} Parts) \bowtie (\sigma_{cost < 100} Catalog) \bowtie Suppliers)) \cap$

 $(\pi_{sname}((\sigma_{color='green}, Parts) \bowtie (\sigma_{cost<100} Catalog) \bowtie Suppliers))$

4.
$$(\pi_{sid}((\sigma_{color='red'} Parts) \bowtie (\sigma_{cost<100} Catalog) \bowtie Suppliers)) \cap$$

 $(\pi_{sid}((\sigma_{color='green'}Parts) \bowtie (\sigma_{cost<100}Catalog) \bowtie Suppliers))$

5. $\pi_{sname}((\pi_{sid,sname}((\sigma_{color='red'}Parts) \bowtie (\sigma_{cost<100}Catalog) \bowtie Suppliers)) \cap$

 $(\pi_{sid,sname}((\sigma_{color='green'}Parts) \bowtie (\sigma_{cost<100}Catalog) \bowtie Suppliers)))$

Assignment 2:

- 1. Find the eids of pilots certified for some Boeing aircraft.
- 2. Find the names of pilots certified for some Boeing aircraft.
- 3. Find the aids of all aircraft that can be used on non-stop flights from Bonn to Madras.
- 4. Identify the flights that can be piloted by every pilot whose salary is more than \$100,000.
- 5. Find the names of pilots who can operate planes with a range greater than 3,000 miles but are not certified on any Boeing aircraft.
- 6. Find the eids of employees who make the highest salary.
- 7. Find the eids of employees who make the second highest salary.
- 8. Find the eids of employees who are certified for the largest number of aircraft.
- 9. Find the eids of employees who are certified for exactly three aircraft.
- 10. Find the total amount paid to employees as salaries.

Questions?