$\pi \sigma \rho$

Relational Algebra

By
 Prof. Muhammad Iqhal Bhat

Government Degree College Beerwah

Outline

- Relational Algebra
- Unary Relational Operations
- Relational Algebra Operations From Set Theory
- Binary Relational Operations
- Additional Relational Operations
- Examples of Queries in Relational Algebra
- Example Database Application (COMPANY)

Relational Algebra Overview

Relational algebra is the basic set of operations for the relational model

These operations enable a user to specify basic retrieval requests (or queries)

The result of an operation is a new relation, which may have been formed from one or more input relations

This property makes the algebra "closed" (all objects in relational algebra are relations)

Relational Algebra Overview (continued)

The algebra operations thus produce new relations

A sequence of relational algebra operations forms a relational algebra expression

These can be further manipulated using operations of the same algebra

The result of a relational algebra expression is also a relation that represents the result of a database query (or retrieval request)

Relational Algebra Overview

- Relational Algebra consists of several groups of operations
- Unary Relational Operations
- SELECT (symbol: σ (sigma))
- PROJECT (symbol: π (pi))
- RENAME (symbol: ρ (rho))
- Relational Algebra Operations From Set Theory
- UNION (U), INTERSECTION (\cap), DIFFERENCE (or MINUS, -)
- CARTESIAN PRODUCT (\mathbf{x})
- Binary Relational Operations
- JOIN (several variations of JOIN exist)
- DIVISION
- Additional Relational Operations
- OUTER JOINS, OUTER UNION
- AGGREGATE FUNCTIONS (These compute summary of information: for example, SUM, COUNT, AVG, MIN, MAX)

Database State for COMPANY

- All examples discussed below refer to the COMPANY database shown here.

Figure 5.7
Referential integrity constraints displayed on the COMPAN Y elational database schema.

Unary Relational Operations: SELECT

- The SELECT operation (denoted by $\boldsymbol{\sigma}$ (sigma)) is used to select a subset of the tuples from a relation based on a selection condition.
- The selection condition acts as a filter
- Keeps only those tuples that satisfy the qualifying condition
- Tuples satisfying the condition are selected whereas the other tuples are discarded (filtered out)
- Examples:
- Select the EMPLOYEE tuples whose department number is 4:

$$
\sigma_{\text {DNO }}=4(\text { EMPLOYEE })
$$

- Select the employee tuples whose salary is greater than \$30,000:
$\sigma_{\text {SALARY }}>30,000$ (EMPLOYEE)

Unary Relational Operations: SELECT

- In general, the select operation is denoted by

$$
\sigma \text { <selection condition> }(R) \text { where }
$$

- the symbol σ (sigma) is used to denote the select operator
- the selection condition is a Boolean (conditional) expression specified on the attributes of relation R
- tuples that make the condition true are selected
- appear in the result of the operation
- tuples that make the condition false are filtered out
- discarded from the result of the operation

Unary Relational Operations: SELECT (continued)

- SELECT Operation Properties
- The SELECT operation σ <selection condition> (R) produces a relation S that has the same schema (same attributes) as R
- SELECT σ is commutative:
- $\sigma_{\text {<condition1> }}\left(\sigma_{\text {<condition2> }}(\mathrm{R})\right)=\sigma_{\text {<condition2> }}\left(\sigma_{\ll \text { condition1> }}(\mathrm{R})\right)$
- Because of commutativity property, a cascade (sequence) of SELECT operations may be applied in any order:
- $\sigma_{\text {<cond1> }}\left(\sigma_{\text {<cond2> }}\left(\sigma_{\text {<cond3> }}(\mathrm{R})\right)=\sigma_{\text {<cond2> }}\left(\sigma_{\text {<cond3> }}\left(\sigma_{\text {<cond1> }}(\mathrm{R})\right)\right)\right.$
- A cascade of SELECT operations may be replaced by a single selection with a conjunction of all the conditions:
- $\sigma_{\text {<cond1> }}\left(\sigma_{\text {<cond2> }}\left(\sigma_{\text {<cond3> }}(R)\right)=\sigma_{\text {<cond1> AND }}\right.$ cond2> AND <cond3> $\left.\left.(R)\right)\right)$
- The number of tuples in the result of a SELECT is less than (or equal to) the number of tuples in the input relation R

The following query results refer to this database state

Unary Relational Operations: PROJECT

- PROJECT Operation is denoted by π (pi)
- This operation keeps certain columns (aitfibutes) from a relation and discards the other columns.
- PROJECT creates a vertical partitioning
- The list of specified columns (attributes) is kept in each tuple
- The other attributes in each tuple are discarded
- Example: To list each employee's first and last name and salary, the following is used:
$\pi_{\text {LNAME, }}$ fNAME,SALARY $(E M P L O Y E E)$

Unary Relational Operations: PROJECT (cont.)

- The general form of the project operation is:
$\pi_{\text {<attribute list> }}(R)$
- π (pi) is the symbol used to represent the project operation
- <attribute list> is the desired list of attributes from relation R.
- The project operation removesany duplicate tuples
- This is because the result of the project operation must be a set of tuples
- Mathematical sets do not allow duplicate elements.

Unary Relational Operations: PROJECT (contd.)

- PROJECT Operation Properties
- The number of tuples in the result of projection $\pi_{\text {<ist> }}(R)$ is always less or equal to the number of tuples in R
- If the list of attributes includes a key of R, then the number of tuples in the result of PROJECT is equal to the number of tuples in R
- PROJECT is not commutative
- $\pi_{\text {<list1> }}\left(\pi_{\text {<list2> }}(\mathrm{R})\right)=\pi_{\text {<list1> }}(\mathrm{R})$ as long as <list2> contains the attributes in <list1>

Examples of applying SELECT and PROJECT operations

(a)

Fname	Minit	Lname	Sen	Bdate	Addrabs	Ser	Salary	Syper_887	Dno
Frarklin	T	Wong	343445555	1955-12-06	63 B Vose Houston, TX	M	40000	BEE665555	5
Jernider	S	Wallwee	98765432!	1941-06-20	291 Eery Belaira, TX	F	43000	BPBed5955	4
Ramesh	K	Narayan	66EB94444	1982-09-15	975 Fio Oak, Humble TX	M	38000	393448555	5

(b)

Lname	Fname	Salary
Smith	John	30000
Wong	Frankin	40000
Znaya	Aliaia	26000
Walace	Jenniler	48000
Maragan	Ramesh	38000
English	Joyce	26000
Jabbar	Almed	25000
Borg	James	55000

(c)

Sex	Salay
M	30000
M	40000
F	25000
F	43000
M	38000
M	25000
M	55000

Relational Algebra Expressions

- We may want to apply several relational algebra operations one after the other
- Either we can write the operations as a single relational algebra expression by nesting the operations, or
- We can apply one operation at a time and create intermediate result relations.
- In the latter case, we must give names to the relations that hold the intermediate results.

Single expression versus sequence of relational operations (Example)

- To retrieve the first name, last name, and salary of all employees who work in department number 5 , we must apply a select and a project operation
- We can write a single relational algebra expression as follows:
- $\pi_{\text {FNAME, LNAME, SALARY }}\left(\sigma_{\text {DNO }=5}(\right.$ EMPLOYEE $\left.)\right)$
- OR We can explicitly show the sequence of operations, giving a name to each intermediate relation:
- DEP5_EMPS $\leftarrow \sigma_{\text {DNO=5 }}$ (EMPLOYEE)
- RESULT $\leftarrow \pi_{\text {fNAME, LNAME SALARY }}$ (DEP5_EMPS)
\square
\square

Unary Relational Operations: RENAME

- The RENAME operator is denoted by ρ (rho)
- In some cases, we may want to rename the attributes of a relation or the relation name or both
- Useful when a query requires multiple operations
- Necessary in some cases (see JOIN operation later)

Unary Relational Operations: RENAME (continued)

- The general RENAME operation ρ can be expressed by any of the following forms:
- $\rho_{\mathrm{S}(\mathrm{B} 1, \mathrm{~B} 2, \ldots, \mathrm{Bn})}(\mathrm{R})$ changes both:
- the relation name to S , and
- the column (attribute) names to B1, B1,Bn
- $\rho_{S}(R)$ changes:
- the relation name only to S
- $\rho_{(B 1, B 2, \ldots, B n)}(R)$ changes:
- the column (attribute) names only to B1, B1,Bn

Unary Relational Operations: RENAME (continued)

- For convenience, we also use a shorthand for renaming attributes in an intermediate relation:
- If we write:
- RESULT $\leftarrow \pi_{\text {fname, lname, salary (PÉP5_EMPS) }}$
- RESULT will have the same attribute names as DEP5_EMPS (same attributes as EMPLOYEE)
- If we write:
- RESULT (F, M, L, S, B, A, SX, SAL, SU, DNO) $\leftarrow \rho_{\text {RESULt }}$ (F.M.L.s.B,A,SX,SAL,SU, DNo) (DEP5_EMPS)
- The 10 attributes of DEP5_EMPS are renamed to F, M, L, S, B, A, SX, SAL, SU, DNO, respectively
Note: the \leftarrow symbol is an assignment operator

Example of applying multiple operations and RENAME

 (b) Using intermediate relations and renaming of attributes.
(a)

Fname	Lname	Salary
John	Smith	30000
Franklin	Wong	40000
Ramesh	Narayan	38000
Joyce	English	25000

(b)

TEMP

Fname	Mint	Lnsme	Sin	Bdate	Address	Sex	Salary	Super_6sn	Dno
John	B	Smith	123456789	1965-01-08	731 Fondren, Houston, TX	M	30000	333445555	5
Franklin	T	Wong	333445685	1955-12-08	338 Voss, Houston, TX	M	40000	B89665855	5
Ramesh	K	Narayan	668884444	1982-09-15	975 Fire Oak, Humble, TX	M	38000	333445555	5
Joyce	A	English	453453453	1972-07:31	5631 Fóce, Houston, TX	F	25000	333445555	5

R

First name	Last name	Selary
John	Smith	30000
Franklin	Wong	40000
Ramesh	Narayan	38000
Joyce	English	25000

Relational Algebra Operations from Set Theory: UNION

- UNION Operation
- Binary operation, denoted by u
- The result of $R \cup S$, is a relation that includes all tuples that are either in R or in S or in both R and S
- Duplicate tuples are eliminated
- The two operand relations R and 'S must be "type compatible" (or UNION compatible)
- R and S must have samenumber of attributes
- Each pair of corresponding attributes must be type compatible (have same or compatible domains)

Relational Algebra Operations from Set Theory: UNION

- Example:
- To retrieve the social security numbers of all employees who either work in department 5 (RESULT1 below) or directly supervise an employee who works in department 5 (RESULT2 below)
- We can use the UNION operation as follows;

$$
\begin{gathered}
\text { DEP5_EMPS } \leftarrow \sigma_{\mathrm{DNO}}=5(\text { EMPLOYEE }) \\
\text { RESULT1 } \leftarrow \pi_{S S N}\left(D E P 5 _E M P S\right) \\
\text { RESULT2(SSN) } \leftarrow \pi_{\text {SUPERSSN }}(\text { DEP5_EMPS }) \\
\text { RESULT } \leftarrow \text { RESULT1 } \cup \text { RESULT2 }
\end{gathered}
$$

- The union operation produces the tuples that are in either RESULT1 or RESULT2 or both

Figure 8.3 Result of the UNION operation RESULT \leftarrow RESULT1 u RESULT2.
RESULT1

Ssn
123456789
333445555
666884444
453453453

RESULT2

Ssn
333445555
888665555

RESULT

Ssn
123456789
333445555
666884444
453453453
888665555

Relational Algebra Operations from Set Theory

- Type compatibility of operands is required for the binary set operation UNION \cup, (also for INTERSECTION \cap, and SET DIFFERENCE -, see next slides)
- R1(A1, A2, ... An) and R2(B1, B2, ..., Bn) are type compatible if:
- they have the same number of attributes, and
- the domains of corresponding attributes are type compatible (i.e. dom(Ai)=dom(Bi) for $i=1,2, \ldots, n$).
- The resulting relation for R1 \cup R2 (also for R1 \cap 2, or R1-R2, see next slides) has the same attribute names as the first operand relation R1 (by convention)

Relational Algebra Operations from Set Theory: INTERSECTION

- INTERSECTION is denoted by \cap
- The result of the operation $R \cap S$, is a relation that includes allituples that are in both R and S
- The attribute names in the result will be the same as the attribute names in R
- The two operand relations R and S must be "type compatible"

Relational Algebra Operations from Set Theory: SET DIFFERENCE (cont.)

- SET DIFFERENCE (also called MINUS or EXCEPT) is denoted by -
- The result of $R-S$, is a relation that includes all tuples that are in R but not in S
- The attribute names in the result will be the same as the attribute names in R
- The two operand relations R and S must be "type compatible"

Example to illustrate the result of UNION, INTERSECT, and DIFFERENCE

Figure 8.4 The set operations UNION, INTERSECTION, and MINU5, (a) Two union-compatible relations. (b) STUDENT U INSTRUCTOR. (c) STUDENT \cap INSTRUCTOR. (d) STUDENT - INSTRUCTOR. (c I IISTRUCTOR STUDENT.
(a)
STUDENT

Fn	Ln
Susan	Yao
Ramesh	Shah
Johnny	Kohler
Barbara	Jones
Amy	Ford
Jimmy	Wang
Ernest	Gilbert

INSTRUCTOR

(b)

Fn	Ln
Susan	Yao
Ramesh	Shah
Johnny	Kohler
Barbara	Jones
Amy	Ford
Jimmy	Wang
Ernest	Gilbert
John	Smith
Ricardo	Browne
Francis	Johnson

(c)

(d)

Fn	Ln
Johnny	Kohler
Barbara	Jones
Amy	Ford
Jimmy	Wang
Ernest	Gibert

(e)

Fname	Lname
John	Smith
Ricardo	Browne
Francis	Johnson

Some properties of UNION, INTERSECT, and DIFFERENCE

- Notice that both union and intersection are commutative operations; that is
- $R \cup S=S \cup R$, and $R \cap S=S \cap R$
- Both union and intersection can be treated as n-ary operations applicable to any number of relations as both are associative operations; that is
- $R \cup(S \cup T)=(R \cup S) \cup T$
- $(R \cap S) \cap T=R \cap(S \cap T)$
- The minus operation is not commutative; that is, in general
- $R-S \neq S-R$

Relational Algebra Operations from Set Theory: CARTESIAN PRODUCT

- CARTESIAN (or CROSS) PRODUCT Operation

- This operation is used to combine tuples from two relations in a combinatorial fashion.
- Denoted by R(A1, A2, . ., An) x S(B1, B2, ..., Bm)
- Result is a relation Q with degree $n+m$ attributes:
- Q(A1, A2, . ., An, B1, B2, . . ., Bm), in that order.
- The resulting relation state has one tuple for each combination of tuples-one from R and one from S .
- Hence, if R has n_{R} tuples (denoted as $|R|=n_{R}$), and S has n_{S} tuples, then $R \times S$ will have $n_{R}{ }^{*} n_{S}$ tuples.
- The two operands do NOT have to be "type compatible"

Relational Algebra Operations from Set Theory: CARTESIAN PRODUCT (cont.)

- Generally, CROSS PRODUCT is not a meaningful operation
- Can become meaningful when followed by other operations
- Example (not meaningful):
- FEMALE_EMPS $\leftarrow \sigma_{\text {SEX='F }}$ (EMPLOYEE)
- EMPNAMES $\leftarrow \pi_{\text {fNAme, lname, ssn }}$ (FEMALE_EMPS)
- EMP_DEPENDENTS \leftarrow EMPNAMES x DEPENDENT
- EMP_DEPENDENTS will containevery combination of EMPNAMES and DEPENDENT
- whether or not they are actually related

Relational Algebra Operations from Set Theory: CARTESIAN PRODUCT (cont.)

- To keep only combinations where the DEPENDENT is related to the EMPLOYEE, we add a SELECT operation as follows
- Example (meaningful):
- FEMALE_EMPS $\leftarrow \sigma_{\text {SEX }}=F(E M P L O Y E E)$
- EMPNAMES $\leftarrow \pi_{\text {FNAME, LNAME, SSN }}$ (FEMALE_EMPS)
- EMP_DEPENDENTS \leftarrow EMPNAMES x DEPENDENT
- ACTUAL_DEPS $\leftarrow \sigma_{\text {SSN=ESSN }}\left(E M P _D E P E N D E N T S\right)$
- RESULT $\leftarrow \pi_{\text {fname, lname, derêndent_name (ACTUAL_DEPS) }}^{\text {(AC }}$
- RESULT will now contain the name of female employees and their dependents

Binary Relational Operations: JOIN

- JOIN Operation (denoted by) $~$)
- The sequence of CARTESIAN PRODECT followed by SELECT is used quite commonly to identify and select related tuples from two relations
- A special operation, called JOIN combines this sequence into a single operation
- This operation is very important for any relational database with more than a single relation, because it allows us combine related tuples from various relations
- The general form of a join operation on two relations R(A1, A2, ... An) and S(B1, $B 2, \ldots, B m$ is:

$$
\bowtie
$$

R. <join condition>S

- where R and S can be any relátions that result from general relational algebra expressions.

Binary Relational Operations: JOIN (cont.)

- Example: Suppose that we want to retrieve the name of the manager of each department.
- To get the manager's name, we need to combine each DEPARTMENT tuple with the EMPLOYEE tuple whose SSN value matches the MGRSSN value in the department tuple.
- We do this by using the join \perp operation.
- DEPT_MGR \leftarrow DEPARTMENT MGRssn=ssn EMPLOYEE
- MGRSSN=SSN is the join condition
- Combines each department record with the employee who manages the department
- The join condition can also be specified as DEPARTMENT.MGRSSN= EMPLOYEE.SSN

Some properties of JOIN

- Consider the following JOIN operation:
- R(A1, A2,..., An) \quad S(B1, B2,..., Bm)

$$
\text { R.Ai }=\mathrm{S} . \mathrm{Bj}
$$

- Result is a relation Q with degree $n+m$ attributes:
- Q(A1, A2, ..., An, B1, B2, ..., Bm), in that order.
- The resulting relation state has one tuple for each combination of tuples-r from R and s from S , but only if they satisfy the join condition $\mathrm{r}[\mathrm{Ai}]=\mathrm{s}[\mathrm{Bj}]$
- Hence, if R has n_{R} tuples, and S has n_{S} tuples, then the join result will generally have less than $\mathrm{n}_{\mathrm{R}}{ }^{*} \mathrm{n}_{\mathrm{S}}$ tuples.
- Only related tuples (based on the join condition) will appear in the result

Some properties of JOIN

- The general case of JOIN operation is called a Theta-join:

- The join condition is called theta
- Theta can be any general boolean expression on the attributes of R and S ; for example:
- R.Ai<S.Bj AND (R.Ak=S.BIOR R.Ap<S.Bq)
- Most join conditions involve one or more equality conditions "AND"ed together; for example:
- R.Ai=S.Bj AND R.Ak=S.BI AND R.Ap=S.Bq

Binary Relational Operations: EQUIJOIN

- EQUIJOIN Operation
- The most common use of join involves joín conditions with equality comparisons only
- Such a join, where the only comparison operator used is =, is called an EQUIJOIN.
- In the result of an EQUIJOIN we always have one or more pairs of attributes (whose names need not be identical) that have identical values in every tuple.
- The JOIN seen in the previous example was an EQUIJOIN.

Binary Relational Operations: NATURAL JOIN Operation

- NATURAL JOIN Operation
- Another variation of JOIN called NATURAL JOIN -2 denoted by * - was created to get rid of the second (superfluous) attribute in an EQUIJOIN condition.
- because one of each pair of attributes with identical values is superfluous
- The standard definition of natural join requires that the two join attributes, or each pair of corresponding join attributes, have the same name in both relations
- If this is not the case, a renaming operation is applied first.

Binary Relational Operations NATURAL JOIN (continued)

- Example: To apply a natural join on the DNUMBER attributes of DEPARTMENT and DEPT_LOCATIONS, it is sufficient to write:
- DEPT_LOCS \leftarrow DEPARTMENT * DEPT $_O C A T I O N S$
- Only attribute with the same name is DNUMBER
- An implicit join condition is created based on this attribute:

DEPARTMENT.DNUMBER=DEPT LOCATIONS.DNUMBER

- Another example: $Q \leftarrow R(A, B, C, D)$ * $S(C, D, E)$
- The implicit join condition includes each pair of attributes with the same name, "AND"ed together:
- R.C=S.C AND R.D.S.D
- Result keeps only one attribute of each such pair:
- Q(A,B,C,D,E)

Complete Set of Relational Operations

- The set of operations including SELECT $\sigma_{,}$PROJECT π, UNION \cup, DIFFERENCE - , RENAME ρ, and CARTESIAN PRODUCT X is called a complete set because any other relational algebra expression can be expressed by a combination of these five operations.
- For example:
- $R \cap S=(R \cup S)-((R-S) \cup(S-R))$
- $R \quad$ <join condition> $S=\sigma$ <join condition> $(R X S)$

Binary Relational Operations: DIVISION

- DIVISION Operation
- The division operation is applied to two relations
- $R(Z) \div S(X)$, where X subset Z. Let $Y=Z-X$ (and hence $Z=X \cup Y$); that is, let Y be the set of attributes of R that are not attributes of S.
- The result of DIVISION is a relation $T\left(x^{\prime}\right)$ that includes a tuple t if tuples t_{R} appear in R with $t_{R}[Y]=t$, and with
- $t_{R}[X]=t_{S}$ for every tuple t_{s} in S.
- For a tuple t to appear in the result T of the DIVISION, the values in t must appear in R in combination with every tuple in S .

Example of DIVISION

Figure 8.8 The DIVISION operation. (a) Dividing S5N_PNOS by SMITH_PNOS. (b) $T+\mathbb{R}^{\prime}+5$

(a) (b)					
SSN_PNOS		SMITH_PNOS Pno	R		S
Essn	Pno		A	B	A
123456789	1	1	a1	b1	a1
123456789	2	2	a2	b1	a2
666884444	3		a3	b1	a3
453453453	1		a4	b1	
453453453	2	SSNS	a1	b2	T
333445555	2	Ssn	a3	b2	B
333445555	3	123456789	a2	b3	b1
333445555	10	453453453	a3	b3	b4
333445555	20	-	a4	b3	
999887777	30		a1	b4	
999887777	10		a2	b4	
987987987	10		a3	b4	
987987987	30				
987654321	30				
987654321	20				
888665555	20				

Table 8.1 Operations of Relational Algebra

Table 8.1 Operations of Relational Algebra

OPERATION	PURPOSE	NOTATION
SELECT	Selects all tuples that satisfy the selection condition from a relation R.	$\sigma_{\text {<selection condition> }}(R)$
PROJECT	Produces a new relation with only some of the attributes of R, and removes duplicate tuples.	$\pi_{<\text {attribute list> }}(R)$
THETA JOIN	Produces all combinations of tuples from R_{1} and R_{2} that satisfy the join condition.	$R_{1} \bowtie_{\text {<join condition> }} R_{2}$
EQUIJOIN	Produces all the combinations of tuples from R_{1} and R_{2} that satisfy a join condition with only equality comparisons.	$\begin{aligned} & R_{1} \bowtie_{\text {<join condition> }} R_{2}, \mathrm{OR} \\ & R_{1} \bowtie_{(\text {<join attributes } 1>),} \\ & (\text { <join attributes } 2>) R_{2} \end{aligned}$
NATURAL JOIN	Same as EOUIJOIN except that the join attributes of R_{2} are not included in the resulting relation; if the join attributes have the same names, they do not have to be specified at all.	$R_{1}{ }^{*}$ <join condition> R_{2}, OR $R_{1}{ }^{*}$ (<join attributes $1>$), (<join attributes $2>$) $R_{2} \mathrm{OR} R_{1} * R_{2}$

continued on next slide

Table 8.1 Operations of Relational Algebra (continued)

Table 8.1 Operations of Relational Algebra

OPERATION	PURPOSE UNION	Produces a relation that includes all the tuples in R_{1} or R_{2} or both R_{1} and $R_{2} ; R_{1}$ and R_{2} must be union compatible.	NOTATION $R_{1} \cup R_{2}$
INTERSECTION	Produces a relation that includes all the tuples in both R_{1} and $R_{2} ; R_{1}$ and R_{2} must be union compatible.	$R_{1} \cap R_{2}$	
DIFFERENCE	Produces a relation that includes all the tuples in R_{1} that are not in $R_{2} ; R_{1}$ and R_{2} must be union compatible.	$R_{1}-R_{2}$	
CARTESIAN PRODUCT	Produces a relation that has the attributes of R_{1} and R_{2} and includes as tuples all possible combinations of tuples from R_{1} and R_{2}.	$R_{1} \times R_{2}$	
DIVISION	Produces a relation $R(X)$ that includes all tuples	$R_{1}(Z) \div R_{2}(Y)$	
$t[X]$ in $R_{1}(Z)$ that appear in R_{1} in combination			
with every tuple from $R_{2}(Y)$, where $Z=X \cup Y$.			

$\pi \sigma \rho$

 $\bowtie \cup \wedge$
Examples on Relational Algebra

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Figure 4.15 An Instance $S 3$ of Sailors

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Figure 4.17 An Instance $B 1$ of Boats

sid	bid	day
22	101	$10 / 10 / 98$
22	102	$10 / 10 / 98$
22	103	$10 / 8 / 98$
22	104	$10 / 7 / 98$
31	102	$11 / 10 / 98$
31	103	$11 / 6 / 98$
31	104	$11 / 12 / 98$
64	101	$9 / 5 / 98$
64	102	$9 / 8 / 98$
74	103	$9 / 8 / 98$

Figure 4.16 An Instance $R 2$ of Reserves

1. Select sname and age of sailors with rating > 6

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Figure 4.15 An Instance $S 3$ of Sailors

sid	bid	day
22	101	$10 / 10 / 98$
22	102	$10 / 10 / 98$
22	103	$10 / 8 / 98$
22	104	$10 / 7 / 98$
31	102	$11 / 10 / 98$
31	103	$11 / 6 / 98$
31	104	$11 / 12 / 98$
64	101	$9 / 5 / 98$
64	102	$9 / 8 / 98$
74	103	$9 / 8 / 98$

Figure 4.16 An Instance $R 2$ of Reserves
$\pi_{\text {sname, age }}\left(\sigma_{\text {rating }>6}(\right.$ Sailors $\left.)\right)$

2. Select name of boats with red color

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Figure 4.15 An Instance $S 3$ of Sailors

sid	bid	day
22	101	$10 / 10 / 98$
22	102	$10 / 10 / 98$
22	103	$10 / 8 / 98$
22	104	$10 / 7 / 98$
31	102	$11 / 10 / 98$
31	103	$11 / 6 / 98$
31	104	$11 / 12 / 98$
64	101	$9 / 5 / 98$
64	102	$9 / 8 / 98$
74	103	$9 / 8 / 98$

Figure 4.16 An Instance $R 2$ of Reserves
$\boldsymbol{\pi}_{\text {bname }}\left(\boldsymbol{\sigma}_{\text {color }=\text { 'red' }}\right.$ (Boats $\left.)\right)$

3. Find the names of sailors who have reserved boat 103 .

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Figure 4.15 An Instance $S 3$ of Sailors

sid	bid	day
22	101	$10 / 10 / 98$
22	102	$10 / 10 / 98$
22	103	$10 / 8 / 98$
22	104	$10 / 7 / 98$
31	102	$11 / 10 / 98$
31	103	$11 / 6 / 98$
31	104	$11 / 12 / 98$
64	101	$9 / 5 / 98$
64	102	$9 / 8 / 98$
74	103	$9 / 8 / 98$

Figure 4.16 An Instance $R 2$ of Reserves

$$
\pi_{\text {sname }}\left(\left(\sigma_{\text {bid=103 }} \text { Reserves }\right) \bowtie \text { Sailors }\right)
$$

3. Find the names of sailors who have reserved boat 103 .

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Figure 4.15 An Instance $S 3$ of Sailors

sid	bid	day
22	101	$10 / 10 / 98$
22	102	$10 / 10 / 98$
22	103	$10 / 8 / 98$
22	104	$10 / 7 / 98$
31	102	$11 / 10 / 98$
31	103	$11 / 6 / 98$
31	104	$11 / 12 / 98$
64	101	$9 / 5 / 98$
64	102	$9 / 8 / 98$
74	103	$9 / 8 / 98$

Figure 4.16 An Instance $R 2$ of Reserves

$$
\pi_{\text {sname }}\left(\left(\sigma_{\text {bid=103 }} \text { Reserves }\right) \bowtie \text { Sailors }\right)
$$

4. Find the names of sailors who have reserved a red boat.

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Figure 4.15 An Instance $S 3$ of Sailors

sid	bid	day
22	101	$10 / 10 / 98$
22	102	$10 / 10 / 98$
22	103	$10 / 8 / 98$
22	104	$10 / 7 / 98$
31	102	$11 / 10 / 98$
31	103	$11 / 6 / 98$
31	104	$11 / 12 / 98$
64	101	$9 / 5 / 98$
64	102	$9 / 8 / 98$
74	103	$9 / 8 / 98$

Figure 4.16 An Instance $R 2$ of Reserves

$$
\pi_{\text {sname }}\left(\left(\sigma_{\text {color='red' }} \text { Boats }\right) \bowtie \text { Reserves } \bowtie \text { Sailors }\right)
$$

5. Find the colors of boats reserved by Lubber

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Figure 4.15 An Instance $S 3$ of Sailors

bid	bname	color
101	Interlake	bhue
102	Interlake	red
103	Clipper	green
104	Marine	red

Figure 4.17 An Instance $B 1$ of Boats $\pi_{\text {color }}\left(\left(\sigma_{\text {sname }={ }^{\prime} \text { Lubber' }}\right.\right.$ Sailors $) \bowtie$ Reserves \bowtie Boats $)$

6. Find the names of sailors who have reserved at least one boat.

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Figure 4.15 An Instance $S 3$ of Sailors

sid	bid	day
22	101	$10 / 10 / 98$
22	102	$10 / 10 / 98$
22	103	$10 / 8 / 98$
22	104	$10 / 7 / 98$
31	102	$11 / 10 / 98$
31	103	$11 / 6 / 98$
31	104	$11 / 12 / 98$
64	101	$9 / 5 / 98$
64	102	$9 / 8 / 98$
74	103	$9 / 8 / 98$

Figure 4.16 An Instance $R 2$ of Reserves
$\pi_{\text {sname }}($ Sailors \bowtie Reserves $)$

7. Find the names of sailors who have reserved a red or a green boat

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Figure 4.15 An Instance $S 3$ of Sailors

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Figure 4.17 An Instance $B 1$ of Boats

$$
\begin{aligned}
& \rho\left(\text { Tempboats },\left(\sigma_{\text {color }=\text { 'red' }} \text { Boats }\right) \cup\left(\sigma_{\text {color='green' }} \text { Boats }\right)\right) \\
& \pi_{\text {sname }}(\text { Tempboats } \bowtie \text { Reserves } \bowtie \text { Sailors })
\end{aligned}
$$

8. Find the names of sailors who have reserved a red and a green boat.

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Figure 4.15 An Instance $S 3$ of Sailors

sid	bid	day
22	101	$10 / 10 / 98$
22	102	$10 / 10 / 98$
22	103	$10 / 8 / 98$
22	104	$10 / 7 / 98$
31	102	$11 / 10 / 98$
31	103	$11 / 6 / 98$
31	104	$11 / 12 / 98$
64	101	$9 / 5 / 98$
64	102	$9 / 8 / 98$
74	103	$9 / 8 / 98$

Figure 4.16 An Instance $R 2$ of Reserves

$$
\begin{aligned}
& \rho\left(\text { Tempboats } 2,\left(\sigma_{\text {color='red }} \text { Boats }\right) \cap\left(\sigma_{\text {color='green' }} \text { Boats }\right)\right) \\
& \pi_{\text {sname }}(\text { Tempboats } 2 \bowtie \text { Reserves } \bowtie \text { Sailors })
\end{aligned}
$$

9. Find the sids of sailors with age over 20 who have not reserved a red boat

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Figure 4.15 An Instance $S 3$ of Sailors

bid	bname	color
101	Interlake	bhue
102	Interlake	red
103	Clipper	green
104	Marine	red

Figure 4.17 An Instance $B 1$ of Boats

$$
\begin{aligned}
& \pi_{\text {sid }}\left(\sigma_{\text {age }>20} \text { Sailors }\right)- \\
& \pi_{\text {sid }}\left(\left(\sigma_{\text {color }=\text { 'red' }} \text { Boats }\right) \bowtie \text { Reserves } \bowtie \text { Sailors }\right)
\end{aligned}
$$

sid	bid	day
22	101	$10 / 10 / 98$
22	102	$10 / 10 / 98$
22	103	$10 / 8 / 98$
22	104	$10 / 7 / 98$
31	102	$11 / 10 / 98$
31	103	$11 / 6 / 98$
31	104	$11 / 12 / 98$
64	101	$9 / 5 / 98$
64	102	$9 / 8 / 98$
74	103	$9 / 8 / 98$

Figure 4.16 An Instance $R 2$ of Reserves

10. Find the names of sailors who have reserved all boats

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Figure 4.15 An Instance $S 3$ of Sailors

bid	bname	color
101	Interlake	bhue
102	Interlake	red
103	Clipper	green
104	Marine	red

Figure 4.17 An Instance $B 1$ of Boats

$$
\begin{aligned}
& \rho\left(\text { Tempsids },\left(\pi_{\text {sid,bid }} \text { Reserves }\right) /\left(\pi_{\text {bid }} \text { Boats }\right)\right) \\
& \pi_{\text {sname }}(\text { Tempsids } \bowtie \text { Sailors })
\end{aligned}
$$

sid	bid	day
22	101	$10 / 10 / 98$
22	102	$10 / 10 / 98$
22	103	$10 / 8 / 98$
22	104	$10 / 7 / 98$
31	102	$11 / 10 / 98$
31	103	$11 / 6 / 98$
31	104	$11 / 12 / 98$
64	101	$9 / 5 / 98$
64	102	$9 / 8 / 98$
74	103	$9 / 8 / 98$

Figure 4.16 An Instance $R 2$ of Reserves

11. Find the names of sailors who have reserved all boats called Interlake

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

bid	bname	color
101	Interlake	bhue
102	Interlake	red
103	Clipper	green
104	Marine	red

Figure 4.17 An Instance $B 1$ of Boats

Figure 4.15 An Instance $S 3$ of Sailors

sid	bid	day
22	101	$10 / 10 / 98$
22	102	$10 / 10 / 98$
22	103	$10 / 8 / 98$
22	104	$10 / 7 / 98$
31	102	$11 / 10 / 98$
31	103	$11 / 6 / 98$
31	104	$11 / 12 / 98$
64	101	$9 / 5 / 98$
64	102	$9 / 8 / 98$
74	103	$9 / 8 / 98$

Figure 4.16 An Instance $R 2$ of Reserves

$$
\begin{aligned}
& \rho\left(\text { Tempsids },\left(\pi_{\text {sid,bid }} \text { Reserves }\right) /\left(\pi_{\text {bid }}\left(\sigma_{\text {bname }=\text { 'Interlake' }} \text { Boats }\right)\right)\right) \\
& \pi_{\text {sname }}(\text { Tempsids } \bowtie \text { Sailors })
\end{aligned}
$$

Assignment 1:

```
Suppliers(sid: integer, sname: string, address: string)
Parts(pid: integer, pname: string, color: string)
Catalog(sid: integer, pid: integer, cest: real)
```

1. Find the names of suppliers who supply some red part.
2. Find the sids of suppliers who supply some red or green part.
3. Find the sids of suppliers who supply some red part or are at 221 Packer Ave.
4. Find the sids of suppliers who supply some red part and some green part.
5. Find the sids of suppliers who supply every part.
6. Find the sids of suppliers who supply every red part.
7. Find the sids of suppliers who supply every red or green part.
8. Find the sids of suppliers who supply every red part or supply every green part.

Assignment 1:

Suppliers(sid: integer, sname: string, address: string)
Parts(pid: integer, pname: string, color: string)
Catalog(sid: integer, pid: integer, cost: real)

State what following queries compute:

1. $\pi_{\text {sname }}\left(\pi_{\text {sid }}\left(\sigma_{\text {color='red }}\right.\right.$ Parts $) \bowtie\left(\sigma_{\text {cost }<100 \text { Catalog }}\right) \bowtie$ Suppliers $)$

2. $\left(\pi_{\text {sname }}\left(\left(\sigma_{\text {color='red }}{ }^{\prime}\right.\right.\right.$ Parts $) \bowtie\left(\sigma_{\text {cost }}\right.$ 100Catalog $) \bowtie$ Suppliers $\left.)\right)$

$$
\left(\pi_{\text {sname }}\left(\left(\sigma_{\text {color='green Parts }}\right) \bowtie\left(\sigma_{\text {cost }<100} \text { Catalog }\right) \bowtie \text { Suppliers }\right)\right)
$$

4. $\left(\pi_{\text {sid }}\left(\left(\sigma_{\text {color }=\text { 'red' }}\right.\right.\right.$ Parts $) \bowtie\left(\sigma_{\text {cost }<100 \text { Catalog }}\right) \bowtie$ Suppliers $\left.)\right)$

$$
\left(\pi_{\text {sid }}\left(\left(\sigma_{\text {color }=\text { 'green' }} \text { Parts }\right) \bowtie\left(\sigma_{\text {cost }<100} \text { Catalog }\right) \bowtie \text { Suppliers }\right)\right)
$$

5. $\pi_{\text {sname }}\left(\left(\pi_{\text {sid,sname }}\left(\left(\sigma_{\text {color }=^{\prime} \text { 'red }}{ }^{\prime}\right.\right.\right.\right.$ Parts $) \bowtie\left(\sigma_{\text {cost }<100}\right.$ Catalog $) \bowtie$ Suppliers $\left.)\right)$

$$
\left.\left(\pi_{\text {sid,sname }}\left(\left(\sigma_{\text {color ='green' }} \text { Parts }\right) \bowtie\left(\sigma_{\text {cost }<100 \text { Catalog }}\right) \bowtie \text { Suppliers }\right)\right)\right)
$$

Assignment 2:
 Flights(flno: integer, from: string, to: string, distance: integer, departs: time, arrives: time) Aircraft(aid: integer, aname: string, cruisingrange: integer) Certified (eid: integer, aid: integer) Employees(eid: integer, ename: string, salary: integer)

1. Find the eids of pilots certified for some Boeing aircraft.
2. Find the names of pilots certified for some Boeing aircraft.
3. Find the aids of all aircraft that can be used on non-stop flights from Bonn to Madras.
4. Identify the flights that can be piloted by every pilot whose salary is more than $\$ 100,000$.
5. Find the names of pilots who can operate planes with a range greater than 3,000 miles but are not certified on any Boeing aircraft.
6. Find the eids of employees who make the highest salary.
7. Find the eids of employees who make the second highest salary.
8. Find the eids of employees who are certified for the largest number of aircraft.
9. Find the eids of employees who are certified for exactly three aircraft.
10. Find the total amount paid to employees as salaries.

Questions?

