
Data structures in
Python- Lists

By

Prof. Muhammad Iqbal Bhat
Department of Higher Education

Government Degree College Beerwah

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Topics

Basic Data Structures
in Python

Lists in Python

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Basic Data
Structures in
Python:

• Data structures are used in
programming to organize and store
data in a way that enables efficient
access and manipulation.

• Python provides several built-in data
structures, including:

• Lists: ordered, mutable collections of
elements

• Tuples: ordered, immutable collections of
elements

• Sets: unordered, mutable collections of
unique elements

• Dictionaries: unordered, mutable
collections of key-value pairs

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Lists in Python:
Lists are a fundamental data structure in Python used to store and
manipulate collections of data.

Lists are ordered, mutable collections of elements.

They can be used to store different types of data such as numbers,
strings, and other objects.

List elements can be accessed and modified using index notation.

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Creating Lists:
A list is created using square brackets [] and elements separated by commas.

Example: my_list = [1, 2, 3, 4, 5]

Lists are mutable, meaning they can be changed after they are created.

Example: my_list[0] = 6

Lists are ordered, meaning the elements are stored in a specific order and can be accessed using an index.

Example: my_list[2] will return 3

Lists can contain heterogeneous elements, meaning they can store elements of different types.

Example: my_list = [1, "two", 3.0, [4, 5]]

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Accessing List elements:
List elements can be accessed using index notation.

The index starts at 0 for the first element and increases by 1 for each subsequent
element.

Negative indices can be used to access elements from the end of the list.

Example: my_list = [1, 2, 3, 4, 5]

my_list[0] will return 1

my_list[-1] will return 5

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

List
Methods:

Python provides several built-in methods for manipulating
lists.

Some commonly used list methods include:

append(): adds an element to the end of the list

insert(): inserts an element at a specific index

remove(): removes the first occurrence of a specified
element

pop(): removes and returns the element at a specific index

sort(): sorts the elements in ascending order

reverse(): reverses the order of the elements in the list

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Examples of
usage of
list:

Example: my_list = [1, 2, 3, 4, 5]

my_list.append(6) will add 6 to the end of the
list

my_list.insert(0, 0) will insert 0 at the beginning
of the list

my_list.remove(3) will remove the first
occurrence of 3

my_list.pop(1) will remove and return the
element at index 1 (i.e., 2)

my_list.sort() will sort the list in ascending order

my_list.reverse() will reverse the order of the
elements in the list

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Program examples:
• Sorting a list of numbers in ascending order:

numbers = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5]
numbers.sort()
print(numbers)
Output: [1, 1, 2, 3, 3, 4, 5, 5, 5, 6, 9]

• Removing duplicates from a list:
fruits = ["apple", "banana", "orange", "apple", "pear",
"orange"]
unique_fruits = list(set(fruits))
print(unique_fruits)

• Finding the index of a specific element in a list
students = ["Alice", "Bob", "Charlie", "David", "Eve"]
index = students.index("Charlie")
print(index)

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Program examples:
• Counting the number of occurrences of an element in a list:

grades = [80, 90, 75, 85, 90, 95, 80, 85, 90]
count = grades.count(90)
print(count)

• Creating a new list by iterating over an
existing list:
numbers = [1, 2, 3, 4, 5]
squares = [x ** 2 for x in numbers]
print(squares)

• Combining two lists into a single list:
fruits = ["apple", "banana", "orange"]
vegetables = ["carrot", "potato", "onion"]
groceries = fruits + vegetables
print(groceries)

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Program examples:
• Reversing a list:

numbers = [1, 2, 3, 4, 5]

numbers.reverse()

print(numbers)

• Slicing a list to get a subset of elements:
numbers = [1, 2, 3, 4, 5]

subset = numbers[1:4]

print(subset)

• Inserting an element at a specific position in a list:
fruits = ["apple", "banana", "orange"]

fruits.insert(1, "pear")

print(fruits)

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Program examples:
• Removing an element from a list by value:

numbers = [1, 2, 3, 4, 5]
numbers.remove(3)
print(numbers)

• Checking if an element exists in a list::
fruits = ["apple", "banana", "orange"]
exists = "banana" in fruits
print(exists)

• Finding the length of a list:
numbers = [1, 2, 3, 4, 5]
squares = []
for x in numbers:

squares.append(x ** 2)
print(squares)

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Conclusion:
• Lists are a versatile and powerful data structure in Python.
• Python provides several built-in methods for manipulating lists

that can help simplify common list operations.
• Familiarizing yourself with list methods can greatly improve your

productivity and effectiveness when working with lists in Python.

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

	Data structures in Python- Lists
	Topics
	Basic Data Structures in Python:
	Lists in Python:
	Creating Lists:
	Accessing List elements:
	List Methods:
	Examples of usage of list:
	Program examples:
	Program examples:
	Program examples:
	Program examples:
	Conclusion:

