
Data structures in
Python-

{Sets}
By

Prof. Muhammad Iqbal Bhat
Department of Higher Education

Government Degree College Beerwah

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

{Sets} in Python:
Sets are unordered collections of unique

elements in Python.

Sets are represented by curly braces or by using
the function.

Sets are mutable, meaning elements can be
added or removed from a set after it is created.

Sets do not allow duplicate values, so each
element in a set is unique.

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Creating and modifying {Sets}:
Using curly braces {}: my_set = {1, 2, 3, 4, 5}

Using the function: my_set = set([1, 2, 3, 4, 5])

Basic Set Operations:

Adding elements to a set: my_set.add(6)

Removing elements from a set: my_set.remove(3)

Checking if an element is in a set: print(4 in my_set) # Output: True

Checking the length of a set: print(len(my_set)) # Output: 5

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Accessing {set} elements:
In Python, you cannot access individual elements of a set
using an index like you can with a list or a tuple because sets
are unordered collections of unique elements. However, you
can iterate over the elements of a set using a loop or convert
the set to another data structure like a list or a tuple and
access elements using an index.

my_set = {1, 2, 3, 4, 5}

for element in my_set:

print(element)

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Common
methods for
set
manipulation

union(other_set): Returns a new set that contains all elements from both sets.

intersection(other_set): Returns a new set that contains only the elements that
are common to both sets.

difference(other_set): Returns a new set that contains only the elements
that are in the first set but not in the second set.

symmetric_difference(other_set): Returns a new set that contains only the
elements that are in either the first set or the second set, but not in both.

issubset(other_set): Returns True if all elements of the set are present in the
other set, and False otherwise.

issuperset(other_set): Returns True if all elements of the other set are present in the
set, and False otherwise.

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Program examples:
set1 = {1, 2, 3, 4, 5}
set2 = {4, 5, 6, 7, 8}
union()
union_set = set1.union(set2)
print(union_set) # Output: {1, 2, 3, 4, 5,
6, 7, 8}

intersection()
intersection_set =
set1.intersection(set2)
print(intersection_set) # Output: {4, 5}

difference()
difference_set = set1.difference(set2)
print(difference_set) # Output: {1, 2, 3}

symmetric_difference()
symmetric_difference_set =
set1.symmetric_difference(set2)
print(symmetric_difference_set)
Output: {1, 2, 3, 6, 7, 8}

issubset()
print(set1.issubset(set2)) #
Output: False

issuperset()
print(set1.issuperset(set2)) #
Output: False

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Uses of {sets}
Prof

. M
. Iq

ba
l B

ha
t (J

KHED)

1. Removing duplicates: Since sets contain only
unique elements, they can be used to remove
duplicates from a list or a tuple

my_list = [1, 2, 3, 2, 4, 5, 3]

my_set = set(my_list)

print(my_set) # Output: {1, 2, 3, 4, 5}

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

2. Membership testing: Sets provide a fast way to
check if an element is present in a collection or
not.

my_set = {1, 2, 3, 4, 5}

if 3 in my_set:

print("3 is present in the set")

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

3. Set operations: Sets support various
mathematical set operations such as union,
intersection, difference, and symmetric difference.
These operations can be used to perform operations
on sets in a fast and efficient way
set1 = {1, 2, 3, 4}

set2 = {3, 4, 5, 6}

union_set = set1.union(set2)

intersection_set = set1.intersection(set2)

difference_set = set1.difference(set2)

symmetric_difference_set =
set1.symmetric_difference(set2)

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Conclusion:
Sets are useful for eliminating duplicates in a collection. Since sets can only contain unique elements,
converting a list or tuple to a set can quickly remove any duplicates.

Sets support various mathematical operations, such as union, intersection, and difference, which can be used
to combine or compare sets in a fast and efficient way.

Sets are unordered, which means that elements are not stored in any particular order. However, this allows sets
to be very fast for membership testing, since the entire set does not need to be searched to determine if an
element is present.

While sets are powerful and versatile, they may not be the right choice for every situation. For example, sets do
not allow duplicates, so if you need to store a collection of elements with repeated values, sets may not be the
best choice. It's important to consider the specific requirements of your program and choose the appropriate
data structure accordingly.

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Questions?

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

	Slide Number 1
	{Sets} in Python:
	Creating and modifying {Sets}:
	Accessing {set} elements:
	Common methods for set manipulation
	Program examples:
	Uses of {sets}
	1. Removing duplicates: Since sets contain only unique elements, they can be used to remove duplicates from a list or a tuple
	2. Membership testing: Sets provide a fast way to check if an element is present in a collection or not.
	3. Set operations: Sets support various mathematical set operations such as union, intersection, difference, and symmetric difference. These operations can be used to perform operations on sets in a fast and efficient way
	Conclusion:
	Questions?

