
C tokens - keywords, 
identifiers, constants, 

operators, special symbols, and 
strings

By

Prof. Muhammad Iqbal Bhat

Government Degree College Beerwah



Topics

C tokens

• keywords, 
• identifiers, 
• constants, 
• operators, 
• special symbols,
• strings



C tokens:

Tokens are the basic building blocks of a C program.

A token is a sequence of characters that represents a specific element in 
the program, such as a keyword, variable, operator, or punctuation symbol.

C language has six types of tokens: keywords, identifiers, constants, 
operators, special symbols, and strings.

Tokens are used to build the structure of a C program and to specify the actions 
that the program should take.



Keywords:

In C programming, keywords are a set of reserved words that have a specific 
meaning and are used to build the structure of the language.

Examples of keywords in C include: "if," "else," "for," "while," "return," 
and "void".

Keywords cannot be used as variable names or identifiers, and it is 
important to avoid using them as such to prevent errors in your program.

Using a keyword as a variable name will result in a compilation error because 
the compiler will confuse the keyword with a reserved word.



List of Keywords:



List of Keywords in C:
Keyword Description
auto Specifies automatic storage duration for a variable.
break Terminates a loop or switch statement.
case Defines a case in a switch statement.
char Declares a character variable or data type.
const Specifies that a variable's value cannot be changed.
continue Skips the remaining statements in a loop.
default Defines the default case in a switch statement.
do Starts a do-while loop.
double Declares a double-precision floating-point variable.
else Specifies an alternative statement in an if-else block.
enum Declares an enumeration type.

extern Specifies that a variable is declared outside the program's 
scope.

float Declares a floating-point variable or data type.
for Starts a for loop.
goto Transfers control to a labeled statement.
if Starts an if statement.

Keyword Description
int Declares an integer variable or data type.
long Declares a long integer variable or data type.
register Specifies register storage class for a variable.
return Returns a value from a function.
short Declares a short integer variable or data type.
signed Declares a signed variable or data type.
sizeof Determines the size of a variable or data type.
static Specifies static storage duration for a variable.
struct Defines a structure type.
switch Starts a switch statement.
typedef Defines a new data type.
union Defines a union type.
unsigned Declares an unsigned variable or data type.

void Declares a function returning no value or a pointer 
without a type.

volatile Specifies that a variable may change unexpectedly.
while Starts a while loop.



Identifiers:

Identifiers are names given to variables, functions, arrays, and other user-defined 
items in a C program.

An identifier in C must start with a letter (a to z or A to Z) or underscore (_), and it 
can be followed by any combination of letters, digits (0 to 9), and underscores.

C language is case-sensitive, so upper and lowercase letters are treated as distinct 
characters in identifiers.

Identifiers in C cannot be the same as C keywords, such as if, else, for, while, etc.



Rules for creating Identifiers in C:
The first character must be an alphabet (either uppercase or lowercase) or an underscore (_).

The identifier can be a combination of letters, digits, or underscore characters.

The identifier must not be a keyword in C.

The identifier must not contain spaces or special characters (such as @, #, $, %, ^, etc.).

The identifier must be unique within the scope of the program.



Examples of Identifiers:
Identifier Correct/Incorrect Remarks

age Correct Starts with a letter, contains only letters

_count Correct Starts with an underscore, contains letters 
and _

myArray Correct Starts with a letter, contains letters and 
uppercase

num_1 Correct Contains letters, underscore and digit

2var Incorrect Starts with a digit
my-name Incorrect Contains a hyphen

if Incorrect Same as C keyword (reserved word)

my array Incorrect Contains a space
my@var Incorrect Contains a special character



Variables:

Variables are used to store data in a C program.

A variable is a named location in the computer's memory that can hold a value of a 
specific data type.

Variables are declared using a data type and a name, and they can be assigned a value 
and used in calculations or other operations throughout the program.

C language supports several data types for variables, including integer, character, 
floating-point, and pointer types.

Variables are an essential part of C programming, as they allow programs to store and 
manipulate data dynamically.



Naming Variables:

Must be a valid 
identifier.

Must not be a 
keyword

Names are case 
sensitive.

Variables are 
identified by only 
first 32 characters.

Library commonly 
uses names 

beginning with _
Examples



Naming conventions for variables in C language:
Use meaningful names: Variable names should be descriptive and convey the purpose of the variable. Avoid using vague or 
generic names such as "x" or "temp".

Use camel case: In camel case, the first letter of each word is capitalized except for the first word. For example, "firstName" or 
"accountBalance".

Use underscores: Alternatively, some developers prefer to use underscores to separate words in variable names. For example, 
"first_name" or "account_balance".

Use lowercase letters: Variable names should be written in lowercase letters to differentiate them from constants, which are 
typically written in uppercase.

Be consistent: It is important to be consistent in variable naming conventions throughout a program or project. This helps ensure 
that the code is easy to read and maintain.

Use plural for arrays: When naming arrays, it is common to use a plural form of the name. For example, "students" instead of 
"student".

Use meaningful prefixes: In some cases, it can be helpful to use a prefix to indicate the type of variable or its scope. For example, 
"g_" for global variables or "p_" for pointers.



Data types in C language:

Data types are an important concept in C programming as they define the type of data 
that a variable can hold and the operations that can be performed on that data.

C language has a 
variety of data types, 

including 

1. Basic data types (such as integers, floating-point 
numbers, and characters), 

2. Derived data types (such as arrays and 
pointers) 

3. User-defined data types (such as 
structures and unions).



Basic Data types:
Basic data types in C language are used to represent fundamental types of data that are used in 
programming.

C language provides four basic integer data types: char, short, int, and long.

Range of Data types:

Data Type Size (in bytes) Range
char 1 -128 to 127 or 0 to 255 (if unsigned)
short 2 -32,768 to 32,767

int 2 or 4 -32,768 to 32,767 or -2,147,483,648 to 2,147,483,647

long 4 or 8 -2,147,483,648 to 2,147,483,647 or -9,223,372,036,854,775,808 to 
9,223,372,036,854,775,807

float 4 3.4e-38 to 3.4e+38
double 8 1.7e-308 to 1.7e+308
long double 12 or 16 3.4e-4932 to 1.1e+4932
void 0 No range (represents the absence of a value)



Examples of 
Basic Data 

types:

Data Type Examples

char char ch = 'a';

short short s = 12345;

int int i = 123;

long long l = 1234567890L;

float float f = 3.14f;

double double d = 3.14159;

void void function();



/*
* Program to demonstrate the use of basic data types in C language

*/
#include <stdio.h>

int main() {
// Declaring and initializing variables of various data types
char c = 'A';
short s = 10;
int i = 100;
long l = 10000L;
float f = 3.14f;
double d = 3.14159;

// Printing the values of the variables to the console
printf("Value of char: %c\n", c);
printf("Value of short: %hd\n", s);
printf("Value of int: %d\n", i);
printf("Value of long: %ld\n", l);
printf("Value of float: %f\n", f);
printf("Value of double: %lf\n", d);

return 0;
}



Constants or Literals



Constants or Literals

Constants refer to fixed values that the program may not 
alter during its execution. 

These fixed values are also called literals.

In C, there are different types of constants, including 
integer, floating-point, character, and string constants.



Integer Literals:
Integer constants are whole numbers without decimal points, 
and can be expressed in decimal (base 10), octal (base 8), or 
hexadecimal (base 16) formats.

A prefix specifies the base or radix: 0x or 0X for hexadecimal, 0 
for octal, and nothing for decimal.

An integer literal can also have a suffix that is a combination of U 
and L, for unsigned and long, respectively. The suffix can be 
uppercase or lowercase and can be in any order.



Integer Literals (Examples)

• 212 /* Legal */

• 215u /* Legal */

• 0xFeeL /* Legal */

• 078 /* Illegal: 8 is not an octal digit */

• 032UU /* Illegal: cannot repeat a suffix */

• 85 /* decimal */

• 0213 /* octal */

• 0x4b /* hexadecimal */

• 30 /* int */

• 30u /* unsigned int */

• 30l /* long */

• 30ul /* unsigned long */



Floating Point Literals:
A floating-point literal has an integer part, a decimal point, a fractional 
part, and an exponent part. 

You can represent floating point literals either in decimal form or 
exponential form.

While representing decimal form, you must include the decimal 
point, the exponent, or both; and while representing exponential 
form, you must include the integer part, the fractional part, or both. 

The signed exponent is introduced by e or E.



Floating Point Literals (Examples)

• Standard notation: float pi = 3.14159;

• Exponential notation: float x = 1.23e-4; (which means 1.23 x 10^-4)

• 3.14159 /* Legal */

• 314159E-5L /* Legal */

• 510E /* Illegal: incomplete exponent */

• 210f /* Illegal: no decimal or exponent */

• .e55 /* Illegal: missing integer or fraction */



Character Literals:

Character literals are enclosed in single quotes, e.g., 'x' can be stored 
in a simple variable of char type.

A character literal can be a plain character (e.g., 'x'), an escape 
sequence (e.g., '\t'), or a universal character (e.g., '\u02C0’).

There are certain characters in C that represent special meaning when 
preceded by a backslash, for example, newline (\n) or tab (\t).



Character Literals (Examples):



String Literals:

• String literals or constants are enclosed in double quotes "". A string 
contains characters that are similar to character literals: plain 
characters, escape sequences, and universal characters.

• You can break a long line into multiple lines using string literals and 
separating them using whitespaces.

char str[] = "Hello, world!";

"hello, dear"

"hello, \

dear"

"hello, " "d" "ear"



How to Define Constants:

Preprocessor

Using #define preprocessor

const

Using const keyword



The #define Preprocessor

• The #define directive defines a symbolic constant that can be used 
throughout the program.

• The syntax for #define is #define constant_name value, 
where constant_name is the name of the constant, and value is the 
value of the constant.
#define LENGTH 10

#define WIDTH 5

#define NEWLINE '\n'



The const Keyword

• Another way to define constants in C is by using the const keyword.
• The syntax for const is const data_type constant_name = value;

• It is a good programming practice to define constants in CAPITALS
const int MAX = 100;

const int LENGTH = 10;

const int WIDTH = 5;

const char NEWLINE = '\n';



Questions?


	C tokens - keywords, identifiers, constants, operators, special symbols, and strings
	Topics
	C tokens:
	Keywords:
	List of Keywords:
	List of Keywords in C:
	Identifiers:
	Rules for creating Identifiers in C:
	Examples of Identifiers:
	Variables:
	Naming Variables:
	Naming conventions for variables in C language:
	Data types in C language:
	Basic Data types:
	Examples of Basic Data types:
	Slide Number 16
	Constants or Literals
	Constants or Literals
	Integer Literals:
	Integer Literals (Examples)
	Floating Point Literals:
	Floating Point Literals (Examples)
	Character Literals:
	Character Literals (Examples):
	String Literals:
	How to Define Constants:
	The #define Preprocessor
	The const Keyword
	Questions?

