Functhg;s IN
Pyl;h\

PronVIuhammad Iqgbal Bhat

Department of Higher Education

Government Degree College Beerwah

Topics:

What are Advantages of Syntax for Defining

Functions? Using Functions and Calling
Functions

Functions in Python

Functions are an essential part of
programming in Python

They are usedd©6 group a set of related

statementsiand execute them multiple times

3 Functions make code more organized,
efficient, and reusable

Advantages of Functions:

Modularity: Functions allow you to break down a program into smaller, more manageable
pieces. This makes it easier to read, understand, and maintain the code.

Reusability: Functions can be reused in multiple p!aces in your code. This can save you time
and effort, and also reduces the amount of code you need to write.

Abstraction: Functions allow you to abstract away the details of how a task is performed. This
makes it easier to reason about the code and to modify it in the future.

Debugging: Functions can help make debugging easier by isolating specific parts of the
program. You can test and debug individual functions without affecting the rest of the code.

Readability: Functions make the code more readable and understandable. By giving each task
its own function, you can create self-contained blocks of code that are easier to comprehend.

Syntax for Defining and Calling Functions:

* The "def" keyword is used to define a function in Python

def greet(name):
print("Hello, + name)

 Function names should be descriptive and follow the naming
conventions of Python

* Function parameters are optional, but if used, they should be
enclosed In parentheses
greet(“Iqgbal™)
* Function blocks are indented and end when the indentation
evel returns to the previous level

 Functions are called using the function name followed by
narentheses

Syntax for Defining and Calling Functions:

* Functions can also have default values for their arguments. This
means that if no value is passed in for the argument, it will use
the default value.

def greet(name="world"):

print("Hello, " + name)
greet() # output: Hello, world
greet(“igbal™) # output: Hello, John

e we can return values from a function using the "return" keyword

def add_numbers(x, y):
return X + y

result = add_numbers(3, 4)
print(result) # oOutput: 7

Variations of Functions
in Python

1. Functions with Required Arguments:

» Required arguments are the arguments that have to be passed
to a function in a particular order. If the required arguments are
not provided in the function call, it will-raise an error.

def greet(name, age):
print("Hello, my name is", name, "and I'm", age, "years old.")

greet(“igbal™, 35)

2. Functions with Default Arguments:
 Default arguments are the arguments that take a default value if

no value is passed to them. This helps in making the function
more flexible. .

def greet(name, age=25):
print("Hello, my name is", name, "and I'm", age, "years old.")

greet("John")

3.1 Functions with Variable-Length Arguments:

« Sometimes, you might want to pass a variable number of
arguments to a function. In such cases, you can use variable-
length arguments. There are two types of variable-length
arguments: *args and **kwargs.

def sum_numbers(*args):

sum = 0

for num in args:
sum += num

return sum

result = sum_numbers(1, 2, 3, 4)
print(result) # output: 10

3.2 Functions with Variable-Length Arguments:

« **kwargs is used to pass a variable-length dictionary of named
arguments to a function.

def print_info(**kwargs):
for key, value in kwargs.items():
print(key + ': ' + value)

print_info(name="1iqbal', age='25', city="New York')

4. Lambda Functions:

e Lambda functions are anonymous functions that can have any
number of arguments, but can only have one expression.

 They are useful when you need a small function for a short period of
time

add_numbers = lambda x, y: x + vy

result = add_numbers(3, 4)

print(result) # Ooutput: 7

* Lambda functions are commonly used in combination with other
functions like "map"”, "filter", and "reduce".

numbers = [1, 2, 3, 4, 5]
squares = list(map(lambda x: X * X, numbers))
print(squares) # output: [1, 4, 9, 16, 25]

5. Recursive Functions:

 Recursive functions are functions that call themselves. They are used
to solve problems that can be broken down into smaller, similar
problems.
def factorial(n):
if n ==
return 1

else:
return n * factorial (n-1)

result = factorial(5)
print(result) # output: 120

6. Higher-Order Functions:

 Higher-order functions are functions that take other functions as
arguments and/or return functions as output. They are used to write
more abstract and reusable code..
def apply_operation(num, func):
return func(num)

def square(x):
return X * X

result = apply_operation(3, square)
print(result) # output: 9

Questions?

	Slide 1: Functions in Python
	Slide 2: Topics:
	Slide 3: Functions in Python
	Slide 4: Advantages of Functions:
	Slide 5: Syntax for Defining and Calling Functions:
	Slide 6: Syntax for Defining and Calling Functions:
	Slide 7: Variations of Functions in Python
	Slide 8: 1. Functions with Required Arguments:
	Slide 9: 2. Functions with Default Arguments:
	Slide 10: 3.1 Functions with Variable-Length Arguments:
	Slide 11: 3.2 Functions with Variable-Length Arguments:
	Slide 12: 4. Lambda Functions:
	Slide 13: 5. Recursive Functions:
	Slide 14: 6. Higher-Order Functions:
	Slide 15: Questions?

