
Functions in
Python

By

Prof. Muhammad Iqbal Bhat
Department of Higher Education

Government Degree College Beerwah

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Topics:

What are

Functions?

1

Advantages of
Using Functions

2

Syntax for Defining
and Calling
Functions

3

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Functions in Python

Functions are an essential part of
programming in Python

They are used to group a set of related
statements and execute them multiple times

Functions make code more organized,
efficient, and reusable

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Advantages of Functions:

Modularity: Functions allow you to break down a program into smaller, more manageable
pieces. This makes it easier to read, understand, and maintain the code.

Reusability: Functions can be reused in multiple places in your code. This can save you time
and effort, and also reduces the amount of code you need to write.

Abstraction: Functions allow you to abstract away the details of how a task is performed. This
makes it easier to reason about the code and to modify it in the future.

Debugging: Functions can help make debugging easier by isolating specific parts of the
program. You can test and debug individual functions without affecting the rest of the code.

Readability: Functions make the code more readable and understandable. By giving each task
its own function, you can create self-contained blocks of code that are easier to comprehend.

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Syntax for Defining and Calling Functions:

• The "def" keyword is used to define a function in Python
def greet(name):

print("Hello, " + name)

• Function names should be descriptive and follow the naming
conventions of Python

• Function parameters are optional, but if used, they should be
enclosed in parentheses
greet(“Iqbal")

• Function blocks are indented and end when the indentation
level returns to the previous level

• Functions are called using the function name followed by
parentheses

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Syntax for Defining and Calling Functions:

• Functions can also have default values for their arguments. This
means that if no value is passed in for the argument, it will use
the default value.
def greet(name="World"):

print("Hello, " + name)

greet() # Output: Hello, World

greet(“iqbal") # Output: Hello, John

• we can return values from a function using the "return" keyword
def add_numbers(x, y):

return x + y

result = add_numbers(3, 4)

print(result) # Output: 7

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

Variations of Functions
in Python

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

1. Functions with Required Arguments:

• Required arguments are the arguments that have to be passed
to a function in a particular order. If the required arguments are
not provided in the function call, it will raise an error.

def greet(name, age):

print("Hello, my name is", name, "and I'm", age, "years old.")

greet(“iqbal", 35)

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

2. Functions with Default Arguments:

• Default arguments are the arguments that take a default value if
no value is passed to them. This helps in making the function
more flexible. .

def greet(name, age=25):

print("Hello, my name is", name, "and I'm", age, "years old.")

greet("John")

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

3.1 Functions with Variable-Length Arguments:

• Sometimes, you might want to pass a variable number of
arguments to a function. In such cases, you can use variable-
length arguments. There are two types of variable-length
arguments: *args and **kwargs.

def sum_numbers(*args):

sum = 0

for num in args:

sum += num

return sum

result = sum_numbers(1, 2, 3, 4)

print(result) # Output: 10

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

3.2 Functions with Variable-Length Arguments:

• **kwargs is used to pass a variable-length dictionary of named
arguments to a function.

def print_info(**kwargs):

for key, value in kwargs.items():

print(key + ': ' + value)

print_info(name='iqbal', age='25', city='New York')

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

4. Lambda Functions:
• Lambda functions are anonymous functions that can have any

number of arguments, but can only have one expression.

• They are useful when you need a small function for a short period of
time

add_numbers = lambda x, y: x + y

result = add_numbers(3, 4)

print(result) # Output: 7

• Lambda functions are commonly used in combination with other
functions like "map", "filter", and "reduce".

numbers = [1, 2, 3, 4, 5]

squares = list(map(lambda x: x * x, numbers))

print(squares) # Output: [1, 4, 9, 16, 25]

Prof
. M

. Iq
ba

l B
ha

t (J
KHED)

5. Recursive Functions:
• Recursive functions are functions that call themselves. They are used

to solve problems that can be broken down into smaller, similar
problems.

def factorial(n):

if n == 0:

return 1

else:

return n * factorial(n-1)

result = factorial(5)

print(result) # Output: 120
Prof

. M
. Iq

ba
l B

ha
t (J

KHED)

6. Higher-Order Functions:
• Higher-order functions are functions that take other functions as

arguments and/or return functions as output. They are used to write
more abstract and reusable code..

def apply_operation(num, func):

return func(num)

def square(x):

return x * x

result = apply_operation(3, square)

print(result) # Output: 9
Prof

. M
. Iq

ba
l B

ha
t (J

KHED)

Questions?
Prof

. M
. Iq

ba
l B

ha
t (J

KHED)

	Slide 1: Functions in Python
	Slide 2: Topics:
	Slide 3: Functions in Python
	Slide 4: Advantages of Functions:
	Slide 5: Syntax for Defining and Calling Functions:
	Slide 6: Syntax for Defining and Calling Functions:
	Slide 7: Variations of Functions in Python
	Slide 8: 1. Functions with Required Arguments:
	Slide 9: 2. Functions with Default Arguments:
	Slide 10: 3.1 Functions with Variable-Length Arguments:
	Slide 11: 3.2 Functions with Variable-Length Arguments:
	Slide 12: 4. Lambda Functions:
	Slide 13: 5. Recursive Functions:
	Slide 14: 6. Higher-Order Functions:
	Slide 15: Questions?

